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ABSTRACT 

A virtual world provides an exceptional resource for the testing and development of an 

Autonomous Underwater Vehicle (AUV). The difficulties associated with the underwater 

environment are numerous and complex. In order to properly verify vehicle results in the laboratory 

such a world must accurately model the physics associated with the vehicle, its submerged 

hydrodynamics characteristics, and interactions with the environment. Environmental effects such as 

wave motion, currents, and flow forces created by bodies moving through the water can cause 

unpredicted performance variations and failures in the ocean environment. The current Phoenix AUV 

virtual world includes steady-state ocean currents, but does not take into account the environmental 

effects of waves and flow forces induced by adjacent vehicles (such as a moving submarine docking 

target). 

This work provides a thorough real-time simulation of these complex factors using physically 

based models. The problem is broken down into wave motion effects, submarine-induced flow fields, 

and virtual sensors to improve AUV motion control. Each set of forces are thoroughly analyzed and 

realistically simulated in real-time through the algorithms developed. In order to maintain real-time 

response, perturbations in the flow field caused by the AUV itself are assumed to be negligible. 

Simulated testing is performed across a range of easy to worst-case scenarios in order to justify 

assumptions. Extensive testing using virtual sensors is used to develop adequate control algorithms in 

the presence of turbulent cross-body flow. 

The result of this research is an enhanced virtual world which more accurately depicts the 

ocean environment, along with the models and control algorithms required to design and operate an 

AUV during submarine launch and recovery. A platform independent approach to virtual environment 

simulation is presented through the use of the Virtual Reality Modeling Language (VRML) and Java. 

Finally, simulation test results provide strong evidence that AUV control with actual cross-body flow 

sensors can enable stable navigation, first through a turbulent flow field and then for subsequent 

docking with a moving submarine. 
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I.  INTRODUCTION 

A.  BACKGROUND 
The end of the cold war has shifted the international balance of military strength. Today's 

United States Navy is undergoing a major reorganization. Our naval mission has moved from an 

open-water strategy to littoral warfare. A paradigm shift of such proportions brings with it the need 

for new strategies, technologies, and insights. Meanwhile public pressure demands reduced military 

funding and resources. These factors are creating challenging situations as a smaller military attempts 

to meet broader range of missions with fewer resources. Highly capable, low-cost underwater robots 

provide promising new capabilities which might be used to enhance military readiness while relieving 

the stress associated with broader mission goals. 

While robots are not a valid solution for every problem domain, mine warfare is a mission 

area that is extremely pertinent. Mine warfare is a naval tactic that can be easily used by any potential 

enemy. It is a low-cost, low-risk measure which is very effective and hard to oppose. 

The Naval Postgraduate School (NPS) Autonomous Underwater Vehicle (AUV) Research 

Group is actively working to provide a solution to this defense problem. The Phoenix AUV is a low- 

cost robot designed for mine detection. One of the research group's goal is to demonstrate that 

autonomous underwater robots are a solution which can provide underway units the ability to search 

areas for mines and obstacles from a safe distance. Figure 1.1 shows the Phoenix AUV deployed 

during in-water testing. 

In addition to in-water robot testing, the NPS has a fully operational virtual environment 

which is used for simulation-based design (SBD). This provides a low-cost development environment 

for many possible robot technologies, reducing both project cost and time to deliver operational 

devices. The virtual environment gives researchers the ability to thoroughly test future devices in 

diverse operating conditions. 
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Figure 1.1. The Phoenix AUV deployed for in 
water testing (Brutzman, 1998). 

B.      MOTIVATION 

Virtual environments provide a realistic arena for the testing and development of future 

vehicle technologies. It is necessary to ensure that simulations are physically based and accurate in 

order to support proper testing and development. This type of simulation-based design (SBD) can be 

used to develop the tools that the military will need to transition to the next century. This thesis 

presents solutions to previously unsolved underwater robot challenges, new capabilities in mine 

warfare and advancements in SBD techniques. 

1.        Mine Warfare 

The NPS AUV research group has been striving with great success to provide a low-cost robot 

solution to mine detection and classification since 1986. The next logical step is to provide a sound 

method for the forward deployment and retrieval of AUV technology. Demonstrating that an AUV 

can be released and recovered underway "closes the loop" for AUVs by providing fully deployable 

technological solutions. 
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Submerged vehicle launch has a relatively easy solution. Submarines have been launching 

various objects through torpedo tubes since World War I. While some modifications to existing tube 

hardware may be required, a clear path to the launching solution exists. The most difficult problem 

for submarine deployment is recovery. Recovery is essential for mission data analysis and AUV re- 

use.     This work provides an important missing link: autonomous vehicle control through turbulent 

water flow while docking. This new capability provides submarines the potential to effectively engage 

in counter mine warfare through deployment of recoverable AUVs. 

2.        Platform Independence 

A second motivation for this research is commonly referred to (in the computer science 

domain) as platform independence. In the context of the problem at hand it is taken to mean providing 

the ability to simulate complex virtual environments on whatever computer resources are available, 

regardless of make, architecture, or operating system. As computational power has increased in the 

recent past, complex simulations are no longer limited to users with high-end graphics workstations. 

Personal computers have the capacity to manage applications that were previously unavailable. 

The vision this work has pursued is one in which anyone anywhere with network connectivity 

can view and actively participate in complex simulation exercises. We are attempting to build a closer 

link between those involved in design and testing and the end user of technology. While the platform- 

independence issue is not directly related to solving torpedo tube docking of an AUV, its importance 

cannot be underestimated. It drives home the point that simulation for spatial awareness can be used 

anywhere. 

C.      OBJECTIVES 

The objective of this research is to design a method of simulating AUV control in a true ocean 

environment in order to accurately test and develop algorithms for moving torpedo tube recovery. To 

achieve this goal there are several sub-problems to address: 

► Wave motion must be accurately simulated for numerous sea states. This is significant 
due to the unpredictability of the ocean environment. For a prototype AUV to be fully 
tested, all possible sea conditions must be available. 

► Foreign-body-induced flow forces must be depicted as realistically as currently 
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possible. These types of forces pose the most difficult problems to the development of 
control algorithms for several reasons. First, they are extremely dynamic. The state of 
flow forces are continuously changing and influenced by many independent factors, 
many of which are not yet completely understood. Second, they occur in the regions 
where robot control is most crucial, i.e. the areas where a control failure could cause 
devastating damage to both the robot and recovery vehicle. 

Extensibility needs to be considered when modeling flow fields. While a significant 
amount is known about the nature and behavior of complex fluid flow, there is still 
much to be discovered. By creating a methodology which allows for the upgrade of 
simulation flow field data as the science of fluid dynamics advances, the accuracy and 
lifetime of the virtual world is enhanced. 

Refinement of the equations of motion is also necessary. The ability to model a 
vehicles behavior based on its size and shape as forces act upon it becomes another 
concern when trying to ensure the behavioral accuracy of such an environment. In 
previous versions of the Phoenix AUV's Virtual World the equations of motion were 
based solely on a cylindrical body shape. 

The source code for the Phoenix AUV Virtual World is distributed openly. 
Unfortunately, due to the computational complexity of such a model its use has 
previously been feasible for only those users with high-end Silicon Graphics 
workstations. With the capabilities of personal computers rapidly increasing and the 
introduction of platform-independent languages (such as Virtual Reality Modeling 
Language (VRML) and Java) it has become possible to move this simulation into the 
platform-independent domain. To this end a platform-independent implementation is 
also provided. 

D.      THESIS OUTLINE 

This chapter describes the background, motivation, and objectives of creating a virtual world 

which accurately models the ocean environment. Chapter II discusses the background of the 

Autonomous Underwater Vehicle (AUV) at the Naval Postgraduate School (NPS) including its 

purpose, history and related research projects. Chapter HI evaluates the goals of this work providing a 

clear and concise problem statement. Chapter IV provides in-depth discussion of design 

considerations and hydrodynamics modeling related to the simulation. Chapter V addresses changes 

required to the AUV execution level, both hardware and software, needed to equip the vehicle so it 

can successfully operate in such an environment. Chapter VI and Chapter VII describe the simulation 
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results found in this research, including run-time performance, simulation limitations and robot 

control/sensor upgrades. Chapter Vm presents conclusions, research contributions and 

recommendations for future work. 





II. RELATED WORK 

A. INTRODUCTION 

The technology involved in virtual environment development and robot simulation 

encompasses many disciplines. While these two tasks seem to be well suited for one another, the 

fields of study that produce the theories employed by each are vastly different. This chapter looks at 

the important areas evaluated for use in this research. The topics range from cutting-edge computer 

graphics to mechanical engineering practices that have been around for many decades. Nevertheless, 

all of these techniques are needed to create the solution to this difficult problem. 

Specific related-work topics examined in this chapter include Phoenix AUV hardware and 

software, underwater virtual world modeling, distributed control, the Virtual Reality Modeling 

Language (VRML), the Java programming language, the Distributed Interactive Simulation (DIS) 

protocol, the DIS-Java-VRML project, and Computational Fluid Dynamics (CFD). 

B. PHOENIX AUV 

An Autonomous Underwater Vehicle (AUV) is a self-contained underwater robot typically 

combining a multitude of sensors and controllers. The Phoenix AUV is an incarnation of this type of 

robot developed to demonstrate the abilities of a low-cost autonomous platform. The Phoenix 

architecture can be broken down into two major categories: hardware and software. 

1.      Hardware Architecture 

The Naval Postgraduate School's (NPS) Phoenix AUV is a complex robot, comprised of a 

single water-tight compartment which contains various motors, controllers, servo-amplifiers, and 

computers. The internal component layout is shown in Figure 2.1 . Figure 2.2 shows the an external 

view of the hardware layout. 

The main processing power inside the Phoenix comes from two computers. A Gespac M68030 

is used to run the execution level software while a Sun Voyager Sparc 5 Workstation runs the tactical 

and strategic level software (Brutzman, 1998). The specifics of each software level will be discussed 

in the following section. The Gespac computer runs the OS-9 operating system allowing for use of 
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real-time multitasking functions when controlling the vehicle devices (Byrnes, 1993). The Sun 

Voyager 5 runs SunOS 5.4. These computers are networked together via an Ethernet inside the 

vehicle. This allows for the machines to easily communicate. It also has advantages in terms of 

remote monitoring. The Ethernet optionally provides Internet connectivity to the boat through a 

tether. The tether can be used to monitor each process, collect data, or to intervene when an 

operational fault occurs. 
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Other interesting pieces of gear include two high-resolution sonar units, a Global Positioning 

System, and an inertial navigation package. The sonar units provide excellent detect and classification 

abilities. They have 1 cm resolution out to a maximum range of 30 meters. Additionally, the ST725 

(725 KHz) has a 1 ° wide by 24° vertical beam, and the ST1000 (1 MHz) a conical beam of 1 ° 

(Brutzman et al, 1998). All of these devices are used to provide a fully autonomous robot with 

significant operational and navigational capabilities. 
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2.      Software Architecture 

The software architecture of the Phoenix AUV is a tri-level design called the Rational 

Behavior Model (RBM). The RBM architecture consists of three separate software layers, each layer 

having its own functional requirements, implementation restrictions, and component interfaces 

(Byrnes, 1993)(Byrnes, 1996)(Marco, Healey, McGhee, 1996). RBM divides robot control into 

functional blocks which mimic those of a submarine operational structure. Thus the use of RBM in 

the NPS vehicle is well suited to the thinking patterns of students involved in the project. 

The RBM divides responsibilities into areas of open-ended strategic planning, soft real-time 

tactical concern, and hard real-time execution level tasks. Figure 2.3 shows the relationship between 

strategic, tactical and execution levels in the RBM. 

TEEM: 
Level 

Emphasis 

Strategic 

Tactical 

Execution 

Mission 
Logic 

Vehicle 
Behaviors 

Hardware 
Control 

Manned 
Submarine 

Commanding 
Officer 

Officer of the 
Deck/Watch 

Officers 

Watchstandens 

Figure 2.3. The Rational Behavior Model Architecture Pyramid (Holden, 1995) 

The execution level provides the interface between software and hardware. It is designed to 

meet all of the systems hard real-time requirements. The execution level is responsible for the 

-10- 



underlying stability of the vehicle, the control of individual devices, and providing data to the tactical 

level (Byrnes, 1993)(Byrnes, 1996). In terms of an underway watch team organization, the execution 

level performs the tasks normally assigned to individual watchstanders. 

The level of command above the watchstanders in the underway watch team is the Officer Of 

the Deck (OOD).   The OOD's responsibilities are concerned with the tactical picture: what individual 

tasks need to be completed to reach a goal. In the RBM this functionality is contained in the tactical 

level.   The tactical level does not operate on hard real-time deadlines, rather it operates in terms of 

discrete events (Byrnes, 1993)(Byrnes, 1996). It provides a software level that interfaces with both the 

execution and the strategic levels, thus giving strategic level indication of vehicle state and completed 

tasks, and execution level commands. 

The highest level of the RBM is the strategic level. This portion corresponds to the role of a 

commanding officer. It is not concerned with the specifics of task completion. Instead the issues that 

the strategic level monitors are the completion of mission goals. Inside the strategic level resides the 

mission specification. Through symbolic computing it uses a set of rules coupled with an inference 

engine to direct (and respond to) the tactical level (Byrnes, 1993)((Byrnes, 1996). 

The RBM is a complex architecture, but it greatly simplifies AUV design and operation 

through appropriate levels of abstraction. By setting clear boundaries between areas of responsibility, 

RBM enables robot control to be defined by separate applications with predefined interfaces. RBM 

also allows naval students, who are intimately familiar with an at-sea watch structure, to apply real- 

world experience to complicated control problems. Using an architecture designed for both robot and 

human requirements has been a crucial advantage. 

C.     PHOENIX AUV VIRTUAL ENVIRONMENT 

Development of an AUV poses a number of unique problems. Chief among those problems is 

the fact that during the actual in-water testing of robot hardware and software, it is often impossible to 

observe or communicate with the vehicle. Analysis is typically limited to post-exercise data review 

alone. This situation confronts designers with a difficult development process. Physical remoteness 

and inability to observe effectively takes away one of the human mind's greatest strengths: the ability 

to visualize. To overcome this problem, a virtual world was developed which models salient 
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characteristics of the ocean environment from the robot's perspective (Brutzman, 1994). This 

effectively puts humans back into middle of the testing and development loop, and allows developers 

to visualize robot behavior under diverse conditions. 

The virtual environment provides an area of underwater terrain in which testing and 

development can be observed. Figure 2.4 is a recent view of the underwater world showing all of the 

major objects that are contained, including Phoenix at the surface just right of center. The 

implementation of the Phoenix AUVs virtual world is broken into three major sections. One portion 

represents the physical side of the operating environment, a second is robot software (and optionally 

hardware), and a third provides an interactive3D graphics window into the virtual environment. 

Figure 2.4 - The Phoenix AUV Virtual World. 

-12- 



The most complex of the modules which comprise the virtual environment is the one which 

models the vehicle hydrodynamics. Inside this program all aspects of vehicle motion are considered. 

Using a Newton-Euler approach to the derivation of the six degree-of-freedom equations of motion 

(Brutzman, 1994)(Healey, 1992), the program provides a very accurate rendition of the environment. 

The dynamics program takes input from the vehicle, describing the state of all of its devices, and 

calculates in complete detail the responses the vehicle is expected to receive from the environment. 

Other physical models includereal-time sonar detection, Global Positioning System (GPS), and 

acoustic navigation. 

Another component of the virtual environment is the AUV software. This code performs the 

task of controlling all of the devices associated with the AUV, including propellers, thrusters, sonars, 

inertial navigation systems and any other hardware installed on Phoenix. This execution level control 

is coupled with the more sophisticated robot intelligence provided by the strategic and tactical levels. 

Communication is conducted through all levels of the RBM architecture to determine how to deploy 

each one of these devices. After determining the state of each sensor and effector, the execution level 

sends out the commands placing them in the appropriate state. Since in the virtual simulation the 

devices are typically not physically present, they are positioned via telemetry vector message 

interchange with the dynamics program. The effects of all the devices are determined by the dynamics 

program models, and then proper responses are sent back to the execution level software. This query- 

response interchange is incorporated into the sense and act phases of the execution level's sense- 

decide-act cycle. This design architecture enables the robot to run and respond to various stimuli in 

the same manner in the virtual world as in the real world, since the robot software in each case is 

identical (Burns, 1996). 

The final portion of the virtual environment gives the user an interactive 3D graphics window 

into the environment. Referred to as the viewer, this program allows observation of all aspects of the 

simulation. Virtual representations are provided to indicate the robots employment of each sensor and 

effector. This visualization has repeatedly been shown to be essential to the development process. 

Figure 2.5 shows the animations associated with the robots use of thrusters and propellers. 
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Figure 2.5. Phoenix AUV in the virtual environment 
demonstrating use of thrusters and main motors. 

This type of visual representation also gives some intuition into how the AUV employs its 

sonar assets. Sonar visualization was used to implement and refine a control algorithm which enables 

the Phoenix AUV to detect and classify objects in the water (Davis, 1996). In the case of a detected 

tube like object the algorithm was further enhanced to allow the vehicle to safely begin entering the 

tube. Figure 2.6 is a screen capture of this type of mission being executed in the virtual environment. 

All of these components are networked together to provide an integrated development 

environment. Multiple simultaneous viewers are enabled via use of the Distributed Interactive 

Simulation (DIS) protocol (IEEE, 1993)(IEEE, 1994a)(IEEE, 1994b). The position, orientation and 

state of the vehicle are multicast across the network via Entity State Protocol Data Units (ESPDU). 

The viewer application listens to the network for these packets, extracts the information from them, 

and incorporates it into the scene rendered in the virtual world. Decoupling, graphics viewers from 

robot software and virtual world models provides a scalable approach that permits multiple 

researchers to evaluate robot mission progress. 

The versatility of the virtual world was further demonstrated by its use for prototype modeling 

of an optical sensor, used for AUV guidance and control without sonar, while docking with a 

stationary torpedo tube (DelTheil, 1997). 
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Figure 2.6. Phoenix AUV Using Sonar to detect and Classify a Torpedo 
Tube (Davis, 1996). 

A virtual environment provides an outstanding arena for robot testing and 

development. It affords system engineers the opportunity to observe equipment operation in a safe 

controlled environment. This type of technological advance is a large step forward for the underwater 

robot community. 

D.      DISTRIBUTED ANALOG/DIGITAL CONTROL DEVELOPMENT 

Computing power has been increasing at an amazing rate. The average lifetime for new 

technology in the computer industry is only nine months, with processing power increasing by an 

order of magnitude every two years. One area in which similar advances are being made is 

networking. These advances have come in transfer rate increases and reliability improvements. This 

allows system designers to leverage the network (and all the resources attached to it) as additional 

assets. 

The network provides an unlimited number of additional resources to any computing system. 

Similar advances are also being made in control technology for data acquisition systems. Smart 

controllers present the opportunity to create autonomous device controls which can monitor device 
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operation, output necessary data readings, and react properly when provided operational commands 

from remote stations. One company leading the way in this field is Echelon. They have developed a 

series of programmable devices which all communicate over a network using a proprietary network 

protocol called LonTalk (Young, 1998). 

Use of small specialized processors can give any system significant performance 

improvements. By offloading portions of specialized control code a central monitor application 

becomes more concise, allowing it to execute more quickly and efficiently. It also adds to system 

robustness. No longer will a single fault halt operation. Other devices not affected by a single control 

board failure will continue to operate normally, leaving the monitoring application to adjust for a 

single device failure. 

Distributed control is the direction in which many data acquisition systems are moving. 

Systems as diverse as elevator control systems and high-voltage air conditioning systems all gain 

from distributed control. This technology can also give the Phoenix AUV execution level a welcome 

upgrade (Young, 1998). 

E.      VIRTUAL REALITY MODELING LANGUAGE (VRML) 

As the Internet continues to expand and gain in popularity, many new technologies are being 

developed to utilize this medium. In the past, browsing web pages has been restricted to two 

dimensions. The Virtual Reality Modeling Language (VRML) brings three-space to the Web. 

VRML is an interpreted language that allows developers to create content-rich three- 

dimensional (3D) worlds which can be viewed across the Internet inside a web browser. At its core 

VRML is a specification for describing 3D worlds through a text-based file format (Ames, 

1997)(VRML, 1997). 
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#VRML V2.0 utf8 

Group { 
Children [ 

Viewpoint   { 
description   Initial view 
position         6-10 
orientation   0 1 0 1.57 

} 
Shape { 

geometry Sphere {   radius 1 } 
appearance Appearance { 

texture ImageTexture { 
url   earth-topo.png 

}  }  } 

Transform   { 
translation   0 -2 1.25 
rotation    0 1  0      1.57 
Children [ 

Shape { 
geometry Text { 

} 
string [" Hello" "world!"] 

appearance Appearance { 
material Material { 

diffuseColor 0.1  0.5  1 

} 
] 

} 

}}} 
] 

Figure 2.7. VRML source code hello_world.wri taken from (Brutzman, 
1998a). 

While VRML is a powerful object description language, it is also a simple language to learn. 

The novice can quickly learn enough to develop his first program. Figure 2.7 is a programming listing 

for the basic "Hello World" program found in so many programming texts (Brutzman, 1998a). The 

results of this small scene description are displayed in Figure 2.8. This demonstrates just how simple 

VRML makes 3D authoring. 
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l*r Netscape LIDIXI 
File   Edit   View   Qq   Communicator   Help 

;;      Back    Forward   Reload     Home    Search    Glide      Print 

Figure 2.8. Output of Hello_world.wri. 

The power of VRML is its ability to create dynamic environments. It fully supports animation, 

user interaction, and advanced object behaviors through scripts (Hartman, 1997). After describing 

objects inside a world a developer has many options regarding how to use those objects. Animation 

can be performed through predetermined routes, execution of scripts, or dynamically using outside 

-18- 



applications to manipulate objects inside the world. The overall affect is the creation of portable 

virtual environments which are visually pleasing and truly interesting. The greatest promise of VRML 

with respect to this project is the possibility of 3D visualization of AUV missions using any web 

browser. 

F.        JAVA 

Java is a fully functional programming language which was first released in 1995 by Sun 

Microsystems. It is a solidly engineered language that was created with many ideal design goals in 

mind. Table 2.1 gives the key features as described by the authors of Java (Cornell, 1997). The key 

features of interest related to the work described in this thesis are that it is architecture neutral, object 

oriented, and portable (Cornell, 1997). 

Java is an architecture-neutral language. What this means is that when a Java program is 

compiled the compiler creates a neutral file format that contains byte codes of the compiled program. 

These byte codes can then be executed on many different processors with the Java run-time 

environment present. The run-time system interprets the byte codes and translates the information into 

native machine code for execution. 

Java Design Goals Functionality of Concern for this Thesis 

Simple Yes 

Object-Oriented Yes 

Distributed No 

Robust No 

Secure No 

Architecture Neutral Yes 

Portable Yes 

Interpreted No 

High Performance Yes 

Multithreaded No 
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Dynamic  No 

Table 2.1. Design goals of the Java programming language, contrasted with thesis goals. 

The object-oriented programming paradigm provides numerous useful characteristics. Java 

fully supports data hiding, encapsulation, inheritance and code reuse through this object-oriented 

approach. This type paradigm focuses on the data being manipulated by an application instead of how 

each step of the manipulation takes place. It gives the developer the ability to write code once and use 

it many times in many different applications. 

Portability brings Java to the Web. There are no implementation-dependent aspects of the Java 

specification (Cornell, 1997). This means that the binary data is stored in a fixed format which 

eliminates the problems of running code on various platforms. Through this type of implementation 

and the use of standard libraries which define portable interfaces, Java byte codes can be retrieved 

across the Internet and run on local platforms, independent of the machine architecture. 

As the world wide web continues to increase in popularity, Java is positioned to be the 

language of choice. Its well-designed class library provides all the functionality required to develop 

professional applications. These applications can be easily distributed via the Internet and run on any 

platform which has the Java run-time environment present. 

G.     DISTRIBUTED INTERACTIVE SIMULATION (DIS) PROTOCOL 

The Distributed Interactive Simulation (DIS) protocol describes a standard of communications 

between entities in distributed simulations (IEEE 93,94a, 94b). It is well suited for general usage in 

networked virtual environments due to the standardization of object interactions. This allows many 

users in remote locations to view or participate in a simulation as long as the standard object interface 

is followed. 

Information is passed between entities through the use of protocol data units (PDUs). Figure 

2.9 demonstrates the architecture of a distributed simulation using DIS. There are 27 different types of 

PDUs defined for use. Each one addresses a different possible interaction between entities. Types of 

PDUs range from the most common Entity State PDU, to the more rarely used Electromagneti 

Emission PDU. The Entity State PDU is the primary PDU used, containing information about; 

tic 

an 
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entity's position, posture, linear and angular velocities and accelerations. It is sent across the network 

by an object whenever one of the its entity state parameters changes by a threshold amount or a 

designated time period has expired. All other entities that are concerned with the position information 

of the sending entity will listen for the PDU and upon receipt will integrate that information into the 

rendered scene. 

Networking provides a significant advantage when working in virtual environments. It allows 

objects which are being operated on remote workstations to be viewed locally. In a complex world 

objects can be offloaded to idle processors while they are rendered by the local machine. This type of 

network interaction is possible through the standards defined by the DIS protocol. 

Simulation 1      Simulation 2      Simulation 3 

Network 

Figure 2.9. Network Connectivity of a DIS simulation. 

H.     DIS-JAVA-VRML 

In an effort to bring large-scale distributed simulations to the personal computer domain a 

working group has been formed to integrate DIS with Java and VRML. A VRML Consortium 

(www.vrml.org) working group is a technical committee which tries to solve specific technical 

problems. The DIS-Java-VRML working group was chartered with numerous goals aimed at making 

these technologies work together. 
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Some specific objectives of the DIS-Java-VRML working group include completing a freely 

available Java implementation of the DIS protocol, producing a set of references and recommended 

practices for mapping between DIS and VRML worlds, create various DIS utilities in Java, and to 

also create some standard physics and math libraries to be used in these simulations. More 

information for regarding the working group can be found at rhttp://www.stl.nDS.navv.mil/dis-java- 

vrmll. 

Browser 

1 
DIS 

Application 
Java 

Bridge 
VRML 
Plug-in 

/ v 

f 

> 

\ f 

Network 
Figure 2.10. DIS-Java-VRML interaction layout. 

The overall layout of a simulation using the DIS-Java-VRML library is quite unique. The 

library handles the interactions between the network, browser, and VRML plugin. Figure 2.10 

outlines the interactions handled by the library. 

Combining the capabilities of DIS, Java and VRML can quickly allow developers to create 

content-rich networked simulations that are available to anyone with access to the Internet. The 
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possibilities of simulation content and complexity are endless. With access via the Web simulations 

can be run anywhere in the world regardless of the locality of participants and simulation monitors. 

This integration truly adds new dimensions to virtual environment use. It continues to move the Web 

into three-space. 

I.       COMPUTATIONAL FLUID DYNAMICS (CFD) 

Computational Fluid Dynamics (CFD) is a field of study concerned with the prediction of 

fluid motion about bodies of arbitrary shape. Supercomputers are typically used to solve numeric 

approximations that describe the fluid flow. 

Looking more closely at the term CFD, this branch of science is considered computational 

because of the use of high-speed computing resources. The fluid flows are typically modeled and 

analyzed using large sets of Navier-Stokes partial differential equations. Solving these equations for 

specific fluid-flow cases is computationally intense because no closed-form solutions exist, except in 

trivially special cases (Scientific Computing Group at Indiana University, 1998). Thus any given 

problem may take days of computational cycles to solve. Solution of CFD problems are generally 

considered to be among the grand challenges of supercomputing. 

CFD also refers to the analysis of fluids. Fluid refers to anything that isn't a solid, thus both 

air and water are considered. A more technical definition classifies fluids "as any substance which 

cannot remain at rest under a sliding, or shearing, stress (Scientific Computing Group at Indiana 

University, 1998)." 

Finally, CFD dynamics refers to the study of objects in motion. In dynamics one is concerned 

with an objects motion and the forces associated with that motion. This is very different from 

kinematics, which is concerned with the relationships of motion quantities regardless of the forces 

induced by that motion (Healey, 1998). Kinematics models are typically less realistic than dynamics 

models. In general the resolution of kinematics models are demonstrably inadequate for AUV motion 

prediction. 

Overall, CFD is a numerically intensive science. Solutions to CFD problems are extremely 

complex and often require the most advanced computer systems to solve. Thus research in this field is 

extremely important, providing the basis for understanding complex flow interactions. From there 
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simpler representations of flow interactions can be created which provide a general model for testing. 

The approach taken by this thesis completely avoids the field of supercomputing CFD, and instead 

seeks PC-based or workstation-based solutions which produce imperfect but adequate results in 

realtime for human operator and robot use. 

J.      SUMMARY 

Many disciplines are needed to complete any complex project. The basis for the solution to the 

problem of torpedo tube docking of the Phoenix AUV epitomizes that notion. Simulation-based 

research and design draws from the newest available technologies. While the environmental forces 

which must be modeled in this type of simulation have been around since the beginning of time, only 

recently has technology been created to help man solve problems in many disciplines. A broad level 

of knowledge must be used to arrive at a correct solution when considering large and complex 

problems. 

This chapter presented an overview of many topics related to the solutions presented in this 

thesis. The Phoenix AUV hardware, software and underwater virtual world modeling were discussed 

because they provide the basis for the testing presented. Other areas such as distributed control, the 

Virtual Reality Modeling Language (VRML), the Java programming language, the Distributed 

Interactive Simulation (DIS) protocol, the DIS-Java-VRML project and Computational Fluid 

Dynamics (CFD) also play a role important roles in solving the problem of torpedo tube recovery. 

While no one topic provides all answers, a combination provides a well-rounded solution. 
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III. PROBLEM STATEMENT 

As the mission of the United States Navy continues to focus on littoral warfare, the 

importance of mine warfare becomes more apparent. Mine warfare has historically been one of the 

most difficult tasks performed by naval units. The majority of the tactical burden has often fallen on 

submarines since their operational areas often coincide with the areas of most value to enemy forces. 

One outstanding tool for mine detection is an Autonomous Underwater Vehicle (AUV). This type of 

robot can be used to scour forward areas using high-frequency sonars and global positioning systems 

(GPS) to detect and neutralize mines, easing the burden of mine detection on all forward-deployed 

units. 

The majority of technical issues preventing this type of AUV deployment have been solved. 

The only problem remaining before this type of vehicle deployment can be executed is the vehicle 

recovery system. Vehicle recovery poses many difficult problems. The evolution itself is very 

dangerous for both the recovering submarine and the AUV. Even the smallest mistake can place the 

submarine at great risk. If the recovery does not run smoothly, damage can range from complete loss 

of the AUV to a breach of the water-tight integrity of the recovering submarine, thus threatening the 

safety of her crew. There is an intolerably small margin of error. 

In an effort to conquer the unresolved issues associated with mine warfare, the Phoenix AUV 

has been created as a research and development platform. It is used to test the newest equipment on 

the market and to develop control algorithms which employs this equipment most effectively. Even in 

stand-alone development the risk of vehicle loss is very high. While robot code is written with safety 

of the vehicle in mind, robot testing is inherently dangerous. For that reason a virtual environment 

was created that is used to test software and hardware prior to in-water testing (Brutzman, 1994). 

A virtual world provides an exceptional resource for the testing and development of AUV 

technology. The difficulties associated with the underwater environment are numerous and complex. 

In order to properly validate the results from such a world, one must accurately model the physics 

associated with the vehicle, its submerged hydrodynamics characteristics, and the environment. 

Environmental effects such wave motion, currents, and flow forces created by bodies moving 

through the water can cause significant variance in the testing environment. The current version of 
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the Phoenix AUV Virtual World includes steady-state ocean currents, but does not take into account 

the localized environmental effects of waves and body-induced flow forces. 

In an effort to provide this type of realistic simulation environment, the effects of 

environmental factors have been completely integrated into the hydrodynamic simulation. This work 

provides a sound real-time simulation of these complex factors using physically based models. The 

problem is broken down into wave motion effects, body-induced flow fields, and AUV motion 

control. Each one is thoroughly analyzed and realistically simulated in real-time through the 

algorithms developed. 

The result of this research is a Virtual World which accurately depicts the ocean environment. 

It can be used to test and develop the control algorithms required to operate an Autonomous 

Underwater Vehicle in any situation without risk. This environment thus provides a safe and 

physically accurate arena in which the problem of torpedo tube recovery can be carefully examined. 

Another issue evaluated in this work is platform independence. As research and development 

money becomes scarce, the availability of high-end graphics workstations is also becoming rare. With 

the advent of platform independent languages such as Virtual Reality Modeling Language (VRML) 

and Java, the ability to run complex three-dimensional (3D) simulations on personal computers has 

arrived. In addition to providing a realistic virtual environment for development of new technology 

this work strives to make that simulation available for anyone to use. By using web-based 

technologies anyone can view and interact with the simulation and development process, further 

advancing the marriage between developer and end user. 

The principal problem addressed by this thesis is that of torpedo tube recovery of the Phoenix 

AUV. It employs a physically based virtual environment to simulate the forces encountered during 

such an evolution. The goal is to provide an overall solution to the problems associated with torpedo 

tube recovery through simulation-based design (SBD). 
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IV. HYDRODYNAMICS MODELING 

A. INTRODUCTION 

This chapter presents the theory behind the implementation of cross-body flow in the Phoenix 

virtual environment. The problem of modeling cross-body flow is broken down into several 

components, each of which is analyzed in depth. An overview first outlines the components of the 

equations of motion algorithms with some detail on the individual parts. The high-resolution 

buoyancy model is described as the basis for modeling flow forces on the AUV. Wave-motion 

simulation is examined in detail, followed by body-induced flow simulation and square hull versus 

round hull adjustments to the equations of motion. 

B. OVERVIEW 

Virtual environments are a very useful tool in the research and development process. Their use 

can provide sound simulation-based designs. The ability to test and redesign during development 

allows for relatively easy correction of design flaws and can save valuable time and money in the 

process. Nevertheless any simulation is only as good as the physical model it is based on. A virtual 

ocean environment which fails to address the physical forces that are present in the real ocean 

provides little insight during development, perhaps guaranteeing the failure of the project. 

The elements of nature must be completely integrated into any simulation environment if it is 

to be used as a true test platform. Additionally, the ocean environment has unique characteristics 

which make its simulation more complex. Factors such as buoyancy, wave motion, and body-induced 

flow forces are among the most computationally complex to model. They are all significant and 

cannot be overlooked when developing a true simulation environment. Figure 4.1 shows the overall 

flow of information within the hydrodynamics model. The separate sections indicate areas of code 

that handle specific calculations which are calculated during each time step. The overall 

hydrodynamics model is described in (Brutzman 94a, 94b, 98). The simple buoyancy model is 

described in (Bacon, 96). This thesis implements the shaded blocks in Figure 4.1. Throughout the 

following discussion of theoretical basis, simplifications were made to ensure true real-time 

performance of the simulation. Assumptions are made when the effect of their simplification do not 
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effect the accuracy of the model, while providing performance improvement. Table 4.1 provides a 

summary of assumptions which will be presented and justified later in the chapter. This chapter 

provides the theoretical basis for a high-resolution buoyancy model, physically based wave motion 

simulation, external submarine body-induced flow field simulation, more precise modeling of square 

hulls versus round hulls, and refinements to the equations of motion (EOM). 

Topic 

Wave motion simulation 

Environmental Factors 

AUV docking approach 

Flat-plate fluid flow theory 

Assumptions 

1. Wave motion effects vehicle position and orientation are due to 

the movement of water across the vehicle body as waves move past. 

2. The length of the Phoenix AUV is small enough that measuring 

wave height above the vehicle at Vi foot increments gives a realistic 

representation of the wave forces felt by the vehicle. 

1. The effects of ocean current are felt by both the AUV and the 

submarine, thus the relative motion caused by steady-state current 

can be ignored locally. 

2. The time variation of environmental factors such as change in sea 

state is slow and can be ignored for the duration of a docking 

evolution. 

1. The AUV will always approach the submarines torpedo tube from 

aft in order to maintain stability and minimize risk of collision. 

2. The AUV approach course will be such that it never passes 

through the turbulence caused by the submarines propeller(s). 

1. The submarine is large enough (when viewed from the AUV) that 

the hull appears as a flat plate. 

2. The majority of drag across the submarine as it moves through the 

water is pressure drag vice skin friction drag. 
Table 4.1. Overview of assumptions made to implement wave motion and flow models. 
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Begin Integration of Equations of Motion { 

If{ 

Low resolution buoyancy model 

} 
Else{ 

High resolution buoyancy model 

Wave force calculation model 

Body-induced flow field model 

Cross-body drag integration for square/round hull vehicle 

Final calculation of EOM for current time-step 

} End Integration of Equations of Motion. 
Figure 4.1. Flow of information within hydrodynamic model of the Phoenix AUV 
virtual environment. 

C.      BUOYANCY MODEL 

Simulation of ocean-going vehicles poses many unique problems. They differ from land- 

based vehicles by exhibiting six degrees of freedom (DOF) in their movement. They primarily differ 

from air vehicles (which do move in six degrees) with respect to buoyancy forces. Buoyancy forces 

differ significantly from the lift experienced in air vehicles. One major difference between these types 

of forces in the modeling and simulation context is fairly straight forward: for an air vehicle, once the 

dimensions are known, the lift force exerted on the plane is proportional to air speed. From these 

forces one can easily calculate position and orientation. In the sea-going vehicle domain, however the 

dynamics model isn't as simple. Vehicle buoyancy is a major contributor to determining vehicle 
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position and orientation, and this quantity is truly dynamic when at the surface. Buoyancy varies 

based on the amount of water displaced at that particular time step, which is an instantly changing 

irregular 3D volumetric integral. Therefore, in order to maintain real-time response, the calculation 

must be optimized and flexible. This is especially important in the underwater domain since buoyancy 

determines whether the vehicle can maintain depth or sink. 

The original virtual world hydrodynamics model only handled neutrally buoyant vehicles 

(Brutzman, 1994). A later refinement estimated buoyancy using box approximations for volume and 

center of buoyancy (Bacon, 1995). This approach provided reasonably accurate simulation when fully 

or partially submerged, but may be insufficient when the submersible is continuously operating on the 

surface or at shallow depths in a surf zone. In this thesis, a high-resolution model is presented that 

precisely approximates volume and center of buoyancy by evaluating the submersible over 15 

separate slices. Each slice has its own buoyancy (and center of buoyancy) that are approximated and 

calculated every time step. Figure 4.2 shows this type of partitioning applied to the Phoenix AUV. 

Figure 4.2. AUV broken into buoyancy model slices. 

This buoyancy model works well and accurately models vehicle response in a variety of 

surfaced and broached conditions. When submerged, each piece of the AUV retains its full buoyant 

force giving the AUV neutral buoyancy. On the surface, the portions of the boat which are out of the 
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water are subtracted from the net buoyancy giving an approximately correct value for that condition. 

Additional impacts of buoyancy on a shifted center of buoyancy are calculated piecewise and then 

summed, using the same computational model provided in (Bacon, 1996). Figure 4.3 graphically 

represents the buoyancy model from (Bacon, 1996). 

Righting Moment 

Original CB 

Figure 4.3. Effect of submerged body exiting water on center of buoyancy (Bacon, 
1996) 

The only condition not considered previously was the effect of ocean waves on vehicle 

buoyancy. Since the model worked so well for the boundary conditions it seemed appropriate to 

extend it by adding the needed functionality to accurately model sea state effects on vehicle motion. 

In order to do so there are several factors to consider and assumptions to make. Issues to address, 

range from what forces are that wave motion produces, how these can be estimated, and finally how 

are they applied to the vehicle to produce an accurate simulation. 

The first assumption to be evaluated applies to the effect wave motion has on the vehicle 

itself. In other words, how do the forces created by passing waves cause the position and orientation 

of the AUV to change? When discussing underwater hydrodynamics one often arrives at the effects 

on a submerged body by multiplying the flow which is present across the body via cross-body drag 
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calculations. This is the proper method to use when the body is moving through a flow. Wave motion 

causes the water surrounding the vehicle to move as a whole. As the wave moves down the length of 

the vehicle the water column surrounding the vehicle is elevated until the crest passes and then it is 

lowered through the trough. The movement of the water column has an effect on the position and 

orientation the vehicle. The cross-body drag present is large enough not to be ignored. With that in 

mind it becomes evident that the most accurate way to simulate wave effects is by evaluating the 

movement of the water column surrounding the vehicle at every time step, and treating that 

movement as piecewise forces, derived from vertical and horizontal velocities. 

Having decided on the proper interaction between wave and vehicle, one must now evaluate 

the interval at which to measure the water column. The length of the Phoenix AUV is relatively small, 

7.3 ft, when compared to the average wavelength of a low sea state. In a sea state of 1 the average 

wavelength is 20 ft. From the buoyancy model already in place calculations are performed for 15 

segments along the body. Continuing this convention for the surrounding water column provides a 

measurement every 6 inches. This accuracy is more than sufficient given the relative size of the 

Phoenix AUV as compared to the wave. This methodology allows the hydrodynamics model to 

calculate a force vector representing the water column surrounding the vehicle at the center of each of 

the 15 body segments. 

The final issue to address when discussing the extension of the buoyancy model to include 

wave effects is how to apply these new force vectors to the vehicle. Superposition of forces is 

performed in a way which is physically accurate and provides a realistic animation in the virtual 

environment. 

As a wave moves along the length of the Phoenix AUV's body force vectors are created 

representing the direction and magnitude with which the water column is moving at that time step. 

Using these vectors it is now possible to adjust the buoyancy of each vehicle segment to include wave 

motion. For each individual segment the buoyancy and wave force vectors are calculated. Then the 

overall effect on vehicle position and orientation is arrived at by adjusting vehicle buoyancy and the 

center of buoyancy. Vehicle buoyancy and vehicle center of buoyance are determined using the 

(Bacon, 1996) methods. The calculations are based on the equation: 

Buoyancy = pgj jjdV 
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where p is the density of water, 

g is gravity, and 

I I J dV is the volumetric displacement of a submerged (or partially submerged) body section 

at any given time. 

This provides an estimated value for buoyancy which is based on the body segments which are 

actually displacing water. If it is the case that a portion of the vehicle is exposed due to a passing 

wave, that section does not contribute to the vehicle overall buoyancy and the center of buoyancy is 

adjusted. 

The forces created by the flow of the water particles moved by the wave are applied to the 

vehicle via cross-body drag calculations. The wave forces are originally determined in world 

reference frame as velocities. Thus these values must be translated into the local frame and applied 

along the length of the vehicle. The translation is done using the following equation: 

u X -dot 

V = Y-dot R 

w Z-dot 

where u, v, and w are body reference frame velocities, X-dot, Y-dot, and Z-dot represent wave 

velocity in the global reference frame, and [R] is the rotation matrix (Healey, 1998). 

This provides a approximation which is both visually accurate and physically correct. The 

development of an accurate buoyancy model has led to significant advances in the simulation of 

underwater vehicle characteristics. It is now possible to simulate proper vehicle behavior when 

submerged, surfaced, or operating in the surf zone. Taking into account simplifying assumptions 

(such as how wave motion affects vehicle position and orientation) it allows for real-time modeling 

while maintaining a physically correct basis. Through extending this model to include the effects of 

wave motion on vehicle dynamics, another step has been made towards accurately simulating all 

aspects of the ocean environment. One crucial final step remains which is deferred as future work: in- 

water validation of predicted model results. Nevertheless, current behavior is visually and 

algorithmically correct enough to justify development of more robust vehicle control laws. 
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D.     WAVE MOTION SIMULATION 

Underwater vehicle design and construction is almost completely preoccupied with 
environmental considerations. The ocean completely surrounds the vehicle, affects the 
slightest nuance of vehicle motion and poses a constant hazard to vehicle survivability. Many 
of the effects of the surrounding environment on a robot vehicle are unique to the underwater 
domain. Vehicles move through the ocean by attempting to control complex forces and 
reactions in a predictable and reliable manner. Thus understanding these forces is a key 
requirement in the development and control of both simple and sophisticated vehicle 
behaviors (Brutzman, 1994). 

With this insight one realizes that in order to provide an arena for the proper development of 

such a complex robot, the art and science of modeling underwater environmental disturbances must 

be mastered.   These effects must be coupled and studied with underwater vehicle underwater control 

and dynamic behavior in order to accurately model reality. 

Environmental disturbances play a significant role in marine control applications. Their effects 

dictate how vehicles are designed, constructed and eventually driven. For these reasons the physics of 

the sea have been studied for many years. The major areas of interest can be broken down into three 

broad categories: wind, ocean currents, and wind-generated waves. 

Each one of these forces is important, having a significant effect on both the novice and 

expert ocean traveler. The wind plays a major role in the design of ocean-going vehicles, but in the 

underwater domain its direct affects are minimal. For this reason the introduction of wind to the 

underwater virtual environment dynamics model is not required. It will be left to those interested in 

surface modeling and simulation to implement wind in their appropriate environments. 

Ocean currents are another environmental disturbance which needs to be evaluated. Any ocean 

navigator recognizes the effects of set and drift. Ignoring their influence can be a fatal mistake. These 

currents are also applicable when discussing submerged vehicles. They exist throughout the world 

and have a large effect in terms of vehicle control. In fact the majority of areas where a robot of this 

type would be employed have significant currents (i.e. harbors or river outlets) and so ocean current 

must be dealt with. 

This work uses two complementary approaches to the simulation of ocean currents. The first 

addresses the local frame of reference and the second the global frame of reference. Locally, the AUV 

is influenced by a set and drift which are present in the area of operation. The direction and force 
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associated with the current is calculated and factored into the position calculation at every time step. 

This provides a very simple and accurate modeling of local currents and their affects on the AUV. 

The driving force behind much of this simulation is to provide an ability to accurately simulate 

the forces an AUV will likely encounter while trying to rendezvous with a submarine in the open 

ocean. For this type of maneuver both vehicles remain in a relatively small area. For example, if the 

entire evolution was to take 1 hour with a submarine at a maximum speed of 3 kt then the total area 

traversed is only 6000 yds. This is a small area when contrasted with the vast expanse of the ocean. 

Thus, while in the global frame of reference there may be many different currents to evaluate and 

apply to vehicles in the vicinity, for our purposes it can be assumed that both the AUV and 

submarine are subject to the same set and drift. This assumption provides a useful advantage. Since 

both vehicles are influenced by an equivalent set and drift the relative motion between the two 

vehicles induced by these currents are insignificant. This result provides additional computational 

simplification: relative motion between the AUV and submarine due to steady-state ocean current (set 

and drift) no longer needs to be calculated. 

Ocean currents are a major factor in both ocean navigation and ocean simulation. For that 

reason the virtual environment developed for the Phoenix AUV fully accounts for the effects of these 

environmental forces. 

Wind-generated waves affect both surface vessels and submersibles which operate at shallow 

depths. The process of wave generation due to wind begins with small wavelets appearing on the 

water surface. This increases the drag force which in turn allows short waves to grow. These short 

waves continue to grow until they finally break and their energy is dissipated. It is observed that a 

developing sea or storm starts with high frequencies creating a spectrum with peak at a relative high 

frequency. A storm which has been blowing for a long time (and has reached quasi-equilibrium) is 

said to create a fully developed sea. After the wind has stopped blowing, low frequency decaying sea 

or swell is formed. These long waves form a spectrum with a low peak frequency. Wind-generated 

waves are usually represented as a sum of a large number of wave components (Fossen, 1990). 

As early as 1952 researchers were developing mathematical representations of wind- 

generated wave phenomena (Fossen, 1990). Their efforts laid the groundwork for the definition of a 

wave-field spectral-density function. In addition, a large amount of data has been collected via 
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observations. By comparing observed data with the mathematical formulations it has been concluded 

that the spectral density of the energy spectrum as a function of wave frequency is sufficient to 

describe a wave environment of fully developed long-crested seas (Reidel, Healey, 1997).   This 

frequency spectrum can be represented as 

S(co) = 
ag 

(O 
-ß 

8 
14 

Vco 
(4.1) 

where a and ß are empirical constants defining the spectrum, g is the acceleration of gravity, w is the 

frequency, and V is the wind velocity. Equation (4.1) describes a general frequency spectrum which 

can be used to fit many observations. To make this formulation more specific there are several 

alternative values for a and ß. One can use the Neumann formula, Pierson-Moskowitz (P-M) formula, 

the Bretschneider formula, or the International Ship Structure Formula to name a few (Fossen, 1990). 

The most common of these is the P-M spectrum. In the P-M spectrum typical values are a = 0.0081 

and ß = 0.74. 

Inserting values for a, ß, and g along with some simplification based on the relationship 

between significant wave height (Hs) and wind velocity (V), a simplified version of the P-M spectrum 

can be arrived at (Reidel, Healey, 1997). Formula (4.2) is the simplified P-M spectrum. 

S((0) = 
8.384 

(O 
exp 

-33.52 

ff.V (4.2) 

Using the P-M spectrum provides the spectral density. This information is used to find the 

wave amplitude, which is needed in order to apply the movement of the water column to the AUV as 

described in section B above. The wave amplitude can easily be represented in terms of spectral 

density as follows: 

A2=2S((0)A(0 (4.3) 

Here A is the amplitude and Aw is the difference in successive wave frequencies (Fossen, 1990). 

From this equation the amplitude of a wave of interest to the position and orientation calculations of 
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the AUV can be arrived at. From here it is necessary to compute the value of wave amplitude at the 

prescribed intervals along the vehicle body. Calculating and combining these many values quickly 

becomes computationally expensive. The final formulation for this approach to wave simulation is 

WaveHeight =   2 
8.384      f-33.52 ,, 
—5—exp|  ..o   A  I lAffl 

V CO' 
2,,4 H co 

s'm((t* freq)+(fadx))* 

cos\Waveheading - AUVheading) 

(4.4) 

where t is time in seconds, freq is wave frequency in radians per second, X is wavelength in ft, and dx 

is the distance along the vehicle body. 

As indicated by the above derivation, wave spectra are complicated and computationally 

expensive. It is difficult to perform this type of analysis as part of a real-time simulation. Luckily the 

diligence and hard work of researchers over the past 45 years alleviates the computational burden 

through published data tables for various wave spectra. These tables are the result of countless hours 

of hard work and provide a solid basis for wave simulation. Table 4.2 is an excerpt from a table found 

in (Bertaux 1976). It gives all the pertinent data required to approximate the P-M spectrum in any sea 

state ranging from 0-9. The fields of interest are significant wave height, frequency, and wavelength. 

With this information the state of a wave at any given time step along the body of the AUV can be 

calculated. 
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Sea State Average 
Significant Wave 

Height (ft) 

Average Period 
(seconds) 

Average Wave 
Length (ft) 

Minimum 
Duration (hours) 

0 0.05 0.5 1.0 18 min. 

1 0.18 1.4 6.7 39 min. 

2 0.6 2.4 20.0 1.7 

3 2.9 4.6 71.0 6.6 

4 4.3 5.4 99.0 9.2 

5 6.4 6.3 134.0 12.0 

6 11.0 7.9 212.0 20.0 

7 21.0 10.3 363.0 34.0 

8 36.0 12.5 534.0 52.0 

9 64.0 16.3 910.0 88.0 
Table 4.2. Characteristics of a fully arisen sea. Excerpts taken from (Bertaux, 1976) 

Having this data in the form of a lookup table at program run time gives the ability to 

dynamically apply the affects of a fully developed sea state to the vehicle. The computational 

advantage gained is tremendous. Equation 4.1 shows how a single wave can be applied to one section 

of the vehicle using the lookup values. 

(., 

WaveHeight = H* 
sin((f* freq)+(X*dx))* 

cos(Waveheading - AUVheading) 
(4.5) 

where, Hs is the significant wave height, t is time, X is wave length, and dx is the distance along the 

AUV body. This allows the instantaneous height of a wave to be calculated for each segment of the 

AUV body. This height is then transformed into a buoyancy force as previously described in section B 
above. 
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Lookup tables also present the possibility of changing sea state during simulation. Although 

this functionality is currently implemented it is important to point out that sea state cannot change in 

nature instantaneously. Nevertheless, looking ahead to long-term scenarios simulating multiple days 

at sea, it is a worthy feature and was included in the implementation. 

Wind-generated waves have an important role when attempting to simulate the physical nature 

of the ocean environment. They are the most complex of the environmental disturbances adding 

significant computational complexity to ocean simulation. Despite this complexity their workings are 

well known. Over 40 years of study have lead to the ability to accurately simulate this phenomenon in 

a real-time virtual environment. 

Environmental disturbances are major factors to consider when simulating the ocean 

environment. They are an ever-present force which all sea going vessels must deal with, whether 

surfaced or submerged. Wind, ocean currents and wind-generated waves are significant factors which 

must be accurately simulated to guarantee the success of any vehicle developed for operation at sea. 

E.      COMPLEX FLOW-FIELD SIMULATION 

Another field which must be addressed in terms of creating a physically based underwater 

simulation environment is fluid mechanics. Fluid mechanics is an area of study concerned with 

observing fluid behaviors in order to utilize and control the effects of fluid movement for the benefit 

of society (James, Haberman, 1988). There are many laws describing the behavior of fluids in motion 

and various methods of applying them. These laws provide the insight needed to successfully model 

important aspects of the ocean environment. 

The forces generated by fluid movement are of particular concern for the problem at hand: 

torpedo tube docking of an AUV. When a body moves through a liquid it displaces an amount equal 

to its volume. This displaced volume of fluid generates forces as it moves and in turn can apply 

substantial force to other bodies in the area. These forces become significant when considering 

torpedo tube docking for several reasons. 

Torpedo tube docking is a high-risk evolution. There are many things which must be evaluated 

before this type of exercise can be conducted. A primary area of concern is of safety, for personnel 

and for both vehicles. A mistake or accident can place the submarine and her crew in great danger. 
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Depending on the nature of the accident, damage can range from compromising the submarines 

water-tight integrity, to creating a noise hazard making the submarine easily detectable by adversaries, 

to crippling the submarine by damaging the propeller or towed sonar array. 

In order to avoid the above-mentioned problems, it is of paramount importance that the 

development of AUV technology be thoroughly tested. To that end it is necessary to ensure that this 

type of flow simulation can be done in real time. Real-time feedback provides useful insight into 

vehicle behavior in such a complex environment. It gives both designers and users a chance to view 

vehicle behavior and actively discuss improvements. The simulation-based design (SBD) 

methodology is a major factor in assuring that finished products meet user requirements. For that 

reason, it is essential for robot development. 

Another aspect to the importance of body-induced flow has to do with the relative size of the 

AUV versus that of a submarine. Figure 4.4 shows the difference in size between the two vehicles. 

The overall submerged displacement of a 688-class submarine is 6900 tons, with a length of 360 ft 

and a 30 ft beam. When this is compared to the AUV, which in the case of Phoenix is 435 lbs 

displacement, 7 ft length and 1.5 ft beam, it becomes obvious that the force of the water displaced as a 

submarine moves in the area of the AUV must be evaluated and accounted for. 

Flow instabilities are also present along the hull of the submarine. These instabilities, although 

small when compared to the amount of flow generated by the moving submarine, can be enough to 

cause major AUV control problems. Large variations in the force and magnitude of movement 

surrounding the vehicle must be planned for during AUV testing and development. By accurately 

simulating these variations control algorithms can be tested to ensure vehicle stability in even the 

worst-case flow situation. 

The reasons why this type of physically based simulation is needed are plentiful. The 

questions to address now include the methodology used in creating such a simulation and any 

assumptions made to ensure real-time performance. 

Intuition tells that since these local forces exist, they must be applied to every vehicle they 

affect. In other words, the submarine creates a significant field which must be felt by the AUV and 

any other vehicles around, while the AUV simultaneously generates its own field which affects the 

submarine. Herein lies the first simplification. Looking again at the size difference between the 
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submarine and AUV in Figure 4.4 makes it obvious that the displacement force created by the AUV is 

not significant from the submarines perspective. In fact, it can be ignored completely. Since water 

displacement is entirely dependent on the size and shape of the vehicle doing the displacement, it is 

necessary to determine the induced flow on a vehicle-by-vehicle basis, taking into account all the 

details of the hull in question. This quickly becomes too computationally expensive for a real-time 

simulation system. Nevertheless, limiting the calculations to one side of the interaction reduces the 

problem by one half, a significant improvement. 

Figure 4.4. Phoenix AUV size (center of image) versus 688 class submarine. 

Inside the virtual environment an area of influence which surrounds the submarine was created 

to represent the flow field. This volume encapsulates all the possible positions that the AUV can be in 
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which are affected by the presence of the submarine. Figures 4.5 and 4.6 give a visual representation 

of this field, with Figure 4.5 showing the side view. It demonstrates that the field exists from bow to 

stern of the submarine. This size field allows modeling the approach of the AUV from any position 

along the hull of the submarine. 

Figure 4.5. Side view of 688 class submarine surrounded by its field of influence. 

While forces do exist forward and aft of the submarine, they are not of concern when 

considering a torpedo tube docking solution, since it is assumed that for the docking evolution the 

AUV will always approach from aft of the torpedo tube door, and it will not take a path which is 

crosses any of the turbulent flow created behind the submarines.propeller. These are reasonably valid 

assumptions. An approach from aft of the torpedo tube door is a necessary fact. This is because the 

submarine must always maintain forward headway to ensure adequate depth and heading control. If 

the AUV were to make an attempt at docking from forward of the submarine, the relative speed 

would be too large to ensure safety and proper control for the evolution. Therefore, the orientation of 

the torpedo tube door must allow rear entry. Figure 4.7 shows a proposed outer door configuration for 

AUV recovery. This provides a unique advantage when conducting the recovery evolution. Adjusting 

the door to move outward has an advantage of being a relatively simple modification to the current 

outer torpedo-tube door configuration, and also provides a sheltered lee for the AUV to move into. 

This lee creates a volume of water for the AUV to perform difficult portions of the docking maneuver 

while sheltered from most open-water flow. 
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Figure 4.6. Front view of 688 class submarine surrounded by its field of influence. 

An approach from the area directly astern of the submarine is not a feasible alternative. The 

reason behind this is inherent in the AUV mission. One of the primary missions for an AUV is mine 

detection and avoidance. The circumstances under which this type of mission is conducted are 

normally those associated with a higher degree of military readiness due to the presence of a possible 

threat. Standard operating procedure for a submarine in that type of environment requires deployment 

of a towed array for enhanced enemy detection and acoustical monitoring. With such a tactically 

valuable (and expensive) piece of equipment trailing from the stern of the submarine, this path 

becomes unavailable for AUV recovery. Thus the AUV is expected to choose an approach from 

behind that is along one side of the submarine, vice fully astern. 

With that in mind, Figure 4.6 gives a better view of the relative area enclosed inside this flow 

field. The cylindrical area extends a distance of 30 ft from the side of the hull giving the area a total 

diameter of 90 ft. Outside this arbitrary volume submarine-induced flow forces are assumed to be 

negligible. 
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Figure 4.7. AUV docking with outward opening torpedo tube door. 

Having examined the size and orientation of the computational model for the flow field, it is 

now necessary to examine what makes up this virtual flow field. The field is comprised of vectors at 

Vi ft intervals. Each one is contains a flow component in the X, Y, and Z direction. The vector 

represents the total amount of flow force (in knots) felt by the vehicle hull at that location relative to 

the submarine. Graphically, one planar slice of the flow-field velocity looks like Figure 4.8. 

This type of grid extends to cover the entire volume within the cylindrical area of influence 

surrounding the submarine. The orientation is such that the innermost row of flow vectors is flush 

with the hull and the outermost follows a line 30 ft out from the hull. An exact flow vector within the 

grid is easily found through position comparison between the AUV and submarine. 
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Figure 4.8. Grid Level inside submarine flow field. 

The construction of the flow field provides some distinct advantages in terms of 

hydrodynamic modeling. In section B of this chapter the high-resolution buoyancy model was 

presented dividing the AUV body into 15 slices. With an AUV length of 7.8 ft this breakdown 

corresponds rather nicely to Yi ft per slice. Thus there is a direct correspondence between the size of 

the grid and the distance between the center of each section along the AUV body. This allows for 

rapid flow vector cross-referencing and application during the cross-body drag calculations. There is 

no need to interpolate between grid positions when retrieving flow vectors for each subsection of the 

vehicle. In fact, the vehicle can move through the flow field at any random orientation and an exact 

position is rapidly determined for the flow force component seen by each section. 

The flow field design eases computational complexity in another area as well. After the 

vehicle position is determined and the flow force vector retrieved it must be applied to the vehicle 

through the equations of motion (EOM). However, by tying the flow field vectors to the submarine 

(global) coordinate system these forces are not in the AUV (local) coordinate system. In order to use 

them in the EOM we must translate them into the local system. Looking at the flow field from the 

AUV point of view, with the submarine on a course of North, it can be said that no matter where the 

vehicle moves in the world coordinate system these velocities will be present. Flow field 

contributions are essentially analogous to the world velocities X-dot, Y-dot, Z-dot, where X-dot 

represents the linear velocity along the North-South axis, Y-dot is the linear velocity along the East- 

West axis, and Z-dot is the linear velocity along the depth axis.  This gives a direct relationship 
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between the flow vector velocities and those which can be used in the vehicle's hydrodynamic 

modeling. The velocities can be rotated from the world coordinate system to the local frame of 

reference as follows: 

u X -dot 

V = Y-dot R 

w Z -dot 
(4.6) 

where u is surge, v is sway, w is heave, and R is the (already calculated) rotation matrix. At this 

point we finally have quantities that can be factored into the calculation of the vehicle's cross-body 

drag and incorporated into the EOM. 

Up to this point, a distinct methodology has been presented for deriving flow forces and 

applying them to the vehicle being affected. The next step is to elaborate on the actual data that is 

used to model these complex flow interactions. While looking at this problem several objectives 

come to mind. Typical computational fluid dynamics (CFD) techniques are far too computationally 

complex for a real-time system, so flow data must be precalculated whenever possible to support the 

simulation. 

Extensibility is at the core of this approach to flow modeling. By importing flow data at run- 

time, the virtual environment can be used as a test bed for numerous flow regimes and control 

environments. The simulation is no longer bound to the specific case for which it was developed (i.e. 

tube entry). The data used can represent any type of flow desired. Additionally as advances in the field 

are made, data files can be upgraded to provide a more accurate representation of the fluid's physical 

behavior. The only requirement is that the data files maintain a readable format, and that requirement 

too can easily be manipulated. 

To create the data needed, a generation program was developed based on Fortran source code 

from (Schetz, 1965). The original program generated a flow profile at a single point along a flat plate 

using a two-dimensional (2D) approach to boundary layer incompressible turbulent flow. In order to 

meet the needs of this simulation the code was converted to C++ and modified to include the flow 

models required. The program also generates output data files which are imported into the virtual 
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environment when a docking simulation is initiated. The code for this program is included in 

Appendix D. 

There are two models which are used to create the flow profile down the length of the 

submarine: one for areas of low turbulence, and one for areas of high turbulence. The majority of the 

submarine hull is included in the areas of low turbulence; for these sections a flat plate fluid flow 

model is used. The turbulent portions use a tube-level flow model. 

1.        Flat-Plate Fluid-Flow Theory 

The total drag on a body is due to the sum of two types of drag: pressure drag and skin friction 

drag. In many cases one of the two types of drag is dominant (John, Haberman, 1988). In the case of a 

submarine moving through the water, pressure drag dominates. 

One flow model which has many similarities to the application in which this data is going to 

be used is the flat-plate fluid-flow model. It is used to model uniform flow over a flat plate aligned 

with the direction of the flow. Since the flow in question is created by the submarine moving in a 

specific direction through the water, it will always be the case that flow is aligned with the flat plate 

(i.e. submarine hull). 

Additionally flat plate theory assumes that over 90% of the drag caused by flow is pressure 

drag, with only a small fraction due to skin friction. Again this is exactly the case for a submarine 

moving through the water. The shape and special hull treatment of a submarine are designed 

specifically to reduce skin friction and reduce undesirable side effects: increased noise levels, 

reduced propulsion plant efficiency, etc. It can intuitively be asserted that the majority of drag felt by 

a submarine is pressure drag due to the amount of water it must displace to move through the water. 

One remaining question regarding model suitability is whether or not the submarine appears to 

be a flat plate from the perspective of the AUV. Figure 4.9 shows a picture of the AUV next to the 

upper 1/3 of a 688 class submarine. What it demonstrates is the fact that the side of the submarine 

extends 10 ft above the AUV and 20 ft below, looking very much like the AUV against a wall or flat 

plate. For another perspective, one can look at Figure 4.4 to get a wide angle view. 
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Figure 4.9. Phoenix AUV seen adjacent and parallel to the upper hull of a 688 class 
submarine. 

After viewing the comparison it becomes readily obvious that using flat plate fluid flow 

model to simulate the flow field in the areas of low turbulence along the submarine hull is a good 

approximation. 

The use of this type of model provides excellent simplification of the run-time flow 

calculations. It creates simple flow vectors. In fact, they only have one component vice three. Due to 

the assumption which said that over 90% of the drag which is present is due to pressure drag, not 

friction drag, two of the three components drop out. The flow force is only present along the axis of 

the plate. This means that of the three flow vector components, X-dot, Y-dot, and Z-dot, only Y-dot is 

a nonzero number. The overall profile extending out from the hull is shown in Figure 4.10. 

What Figure 4.10 shows is how flow changes as one moves out from the hull of the submarine. 
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Initially flow is at 0% of the open water velocity and it rapidly increases to 100% as the distance from 

the hull decreases. This demonstrates that the effects of the submarine's presence are larger as the 

AUV approaches to the hull. The distance at which flow returns to the open water value is 

approximately 25-28 ft. For that reason the flow field extends 30 ft from the hull, which gives a small 

buffer for insertion of more severe flow profiles. It is also interesting to note that as the distance of the 

vehicle moves from the bow to the stern the percentage of open water flow seen by the vehicle moves 

toward 100% more rapidly. This is an expected phenomenon when using a flat-plate approximation. 

Üinf A (% Open Flow Force) Submarine Profile Slices 

2 0                3 0                40                50 
Y   ->   (Distance   from  Kiill)   •• 

Fri   Jan   16   14:43:40   1998  
Figure 4.10. Flat-plate flow profile (generated by flow generation code) versus distance 
from the hull of a 688 submarine, shown at 5 locations along the hull. 

The flat-plate fluid flow model provides an excellent match for areas within the submarines 

field of influence where low turbulence is expected. The assumptions inherent in the theory 

correspond almost directly with the characteristics of the problem being addressed. This approach 
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also provides a nice computational advantage since this profile can be used for the majority of the 

submarine. 

2.        Tube-Level Fluid Flow 

Some areas along the submarines hull cannot be approximated by the flat plate model, since 

they are subject to much more complex flow interactions. For the submarine docking problem at 

hand, the area of concern surrounds the open torpedo tube door, beginning slightly ahead of the door 

and continuing back along the hull until flow is no longer disturbed by the instabilities caused by the 

open door. 

This type of flow profile is similar to those experienced when viewing flow over a cavity. In 

this case the torpedo tube outer door acts as a shield and the tube area is the cavity. The behavior of 

flow in this type of situation is very complex and poorly defined. There is a great deal of active 

research being done on flow fields since many aspects of flow behavior are poorly understood. What 

is known gives enough of a picture of the flow interaction to make this simulation as accurate as 

possible. 

To accurately model this type of flow there are three portions to take into account: the flow 

approaching the tube, the flow inside the cavity (and directly aft of the tube) and the rest of the flow 

path from aft of the tube to the stern. 

The flow area forward of the tube is easily modeled. As flow moves along the hull the 

protruding torpedo tube door forces an outward movement of the flow. In this area each flow vector 

now has a magnitude in the x direction, out from the hull, and the y direction, along the hull. Figure 

4.11 portrays the overall flow picture in this area. 
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Figure 4.11. Flow interaction as it approaches an open torpedo tube door. 

Figure 4.11 depicts how the flow moving along the hull is forced outwards creating a flow 

force vector which moves away from the hull and aft. After the end of the door is reached the flow 

interaction becomes very complex. In this area a dead zone is created inside the cavity. In the cavity 

area there are no significant flow forces at all. As displaced water moves back into the area behind the 

torpedo tube, a time-varying flow-profile is created. Vortices are created at varying frequencies along 

the path that follows the door. Figure 4.12 gives a top-down view of what the flow profile resembles 

at a given moment. The dead zone represented by the shaded area moves along with the submarine as 

the vortices are created directly aft of the area. Some small flow aft may exist in this dead zone if 

water is permitted to pass through openings where the door meets the hull. Such small flow may also 

help stabilize turbulence. 
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Figure 4.12. Flow movement aft of the torpedo tube door. 

The final area to examine is aft of the tube disturbances. In this area flow has stabilized. All 

the complex interactions caused previously have subsided. Here it is again possible to model the flow 

field as a flat plate. The only additional disturbances present in this area are those created by pump 

suctions and discharges. 

The flow interactions present on the tube level of the submarine are quite complex. This 

influence is time varying and not yet fully understood. The majority of the interactions take place on a 

small scale (less than inches) that a scale of Vi foot intervals between flow measurements can only 

approximate. In this simulation the variance of flow in this situation has been captured at a low level 

of detail. As advances are made in the understanding of fluid flow over cavities it will be possible to 

upgrade the resolution of flow vector data used. For the time being this model provides a plausibly 
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accurate testing environment for AUV interaction within complex flow situations. By examining 

approximate but worst-case conditions, an estimate of the magnitude of flow effects can be simulated. 

F.      EQUATIONS OF MOTION (EOM) 

The Phoenix AUV virtual environment uses a Newton-Euler approach to the six degree of 

freedom (DOF) EOM. This accurately models the kinematics and dynamics of a rigid body vehicle 

moving without constraint (Brutzman, 1994)(Healey, 1998). These equations have been partially 

verified through extensive testing in the virtual environment coupled with in-water mission analysis. 

In all cases the results experienced in the virtual environment demonstrated proper behavior, as 

evidenced by similar results during in-water runs of identical missions. Additional testing is needed to 

quantify the effects of recent hardware improvements (such as larger shrouded propellers). 

In order to properly integrate the flow forces previously discussed into the virtual 

environment, we examine the EOM looking for the proper terms to modify. Equation 4.7 is the sway 

equation of motion from (Brutzman, 1994) which is implemented in the Phoenix AUV virtual 

environment. 

Sway Equation of Motion (4.7) 
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The variables and coefficients in the sway equation of motion are defined in (Brutzman, 1994). 

The terms of the EOM define all the major force contributors to vehicle motion. Similar 

equations exist which define surge, heave, roll, pitch, and yaw. These can be found in (Brutzman, 

1994). For this discussion, the sway equation of motion is used as an example. 

For the problem at hand it is necessary to integrate the additional flow force contributions into 

the EOM. Since the body-induced flow forces are primarily due to the cross-body drag of the water as 

it passes over the vehicle, the logical place to insert these factors is the term dealing with cross-body 

drag. To do so we must first examine precisely how these velocities induce drag. 

1.        Round Hull Derivation 

Cross-body drag is calculated to incorporate the force generated by the motion of water over a 

rigid body. When determining the magnitude and direction of this force one must know the shape and 

size of the body being effected. In past versions of the EOM it has been assumed that the shape of the 

body was always cylindrical. This provides a solution to the six degree of freedom model that is 

general enough to accurately depict the cross-body drag for the majority of submerged vehicles. 

Incident Force 

Resultant Force 

Resultant Force = Incident Force 

Figure 4.13. Flow force incident upon a round body. 

For a round body the force applied by the water is always in the same direction as the original 
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force. When calculating the cross-body drag the v and w components can be found by the breaking the 

force up into the respective components, Fy and Fw, then normalizing. Figure 4.13 gives a visual 

representation of these forces and their components. 

The terms can be defined mathematically as follows (Healey, 1998): 

Fy = ^CDpv2dx Fw = -CDpw2dx (4.8) and (4.9) 

Going one step further it can be said that 

v = v0 + xr (4-10) 

and 

w = w0+ xq (4.11) 

Taking these facts and adding a term for normalization gives the final version of the cross-body drag 

formulation. 

1          ,          ,2 (v + xr) 
Fy = TCDp(v + xr)2 — dx (4.12) 
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These forces are incorporated into the EOM as one of the multiple terms present. Translating 

the forces into the rigid body's reference frame and integrating their effect along the horizontal axis of 
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the body results in the fifth term on the right hand side in the sway equation of motion. 

This term represents the effects of flow forces across the spherical rigid body. As is evidenced 

by the derivation of the forces, shape of the rigid body does make a difference. In the case of the 

Phoenix AUV, which has a rectangular shape, this generic model is inaccurate. 

2.        Square Hull Derivation 

When a flow force is incident upon a rigid body that does not have a spherical shape the 

direction of the resultant force is not necessarily the same direction the force came from. Figure 4.14 

demonstrates this fact. Given a force incident upon a rigid body with a shape that is rectangular, the 

resultant force is not equal in magnitude or direction to the resultant force. 

The initial formulation from the round hull derivation of cross-body drag is similar, but the 

terms cannot be normalized using Ucf. The reason for this is that Ucf is radialized and it is no longer 

the case that the forces are radially symmetric. This causes some differences to exist between the 

cross-body drag term in the EOM for a spherically shaped body versus the same term in the EOM for 

a non spherical body. The formulation for Fy and Fw in this case are given in (4.14) and (4.15) 

(Healey, 1998). 

Incident Force 

Resultant Force 

Resultant Force * Incident Force 

Figure 4.14. Flow force incident upon a non-spherical 
rigid body. 
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Taking these revised force formulations and incorporating them into the EOM to make a more 

specific set of equations yields the sway equation of motion given in (4.16). This equation provides an 

accurate evaluation of cross-body drag and is computationally less complex than the spherical hull 

case. Thus it provides two advantages. Similar specializations are performed for the equations of 

motion for heave, pitch, and yaw. 

Square Hull Sway Equation of Motion (4.16) 
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In order to improve the accuracy of the Phoenix AUV virtual environment without limiting its 

extensibility, both models are incorporated in the implementation. The user can select the shape of the 

hull being tested in the virtual environment, and based on that selection the appropriate version of the 

EOM will be used. 

G.      SUMMARY 

The environment plays a major role in all aspects of AUV research and design. If a virtual 

environment is to act as a true test bed for newly engineered, devices it must take into account the 

forces of nature. The virtual environment used for testing and development of the Phoenix AUV 

incorporates many environmental factors into its simulation. The virtual environment is truly 

physically based. The enhancements added throughout this work incorporate a highly detailed 

buoyancy model, wave motion simulation based on the Pierson-Moskowitz wave spectrum, a detailed 

methodology for simulating body induced flow forces, and a specialization of the equations of motion 

to offer a higher resolution method for modeling cross-body drag on non spherical rigid bodies. 

All of these factors serve to enhance the realistic behaviors which are present inside the 

Phoenix AUV's virtual environment. Improvements of this type can only better performance leading 

to improved design, testing, and final product. 
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V. IMPLEMENTATION 

A. INTRODUCTION 

As with any technically based research, there needs to be some proof of correctness for the 

various theories presented. This chapter examines two separate implementations of the Phoenix 

AUVs virtual environment. The initial implementation was done using C++ and Silicon Graphics 

Openlnventor Application Programmers Interface (API). This version runs solely on Silicon Graphics 

workstations. A second platform-independent, implementation was created to run on any machine 

upon which the Java runtime environment is present. Each version uses the DIS protocol for 

networking enabling the user to run a mix of viewer and dynamics versions if desired. 

B. C++ AND OPEN INVENTOR 

The virtual environment is primarily comprised of three components. In their original 

implementation the dynamics program was written in C++, robot execution level in C, and the viewer 

in C++ using the Openlnventor API (Brutzman, 1993). Each component was thoroughly tested and 

the performance was validated by real-world experiments. With this history in mind, the logical 

choice is to first implement the flow and buoyancy models in C++ before the transition to Java. 

The wave model and the submarine-induced flow forces both relate to the environments 

effect on the AUV, thus both are implemented in the dynamics code. The code itself is located in a 

function called calculate_equations_of_motion() which is included in Appendix A. 

The algorithm for the wave model uses the P-M spectrum as discussed in Chapter IV. For each 

time step, the height of the wave is calculated for the fifteen sections down the AUV body length. At 

each block, a force vector proportional to the wave height is assigned. After stepping down the length 

of the body the vectors are added and averaged to get an overall force that acts upon the entire AUV. 

This superposition vector is used to adjust the center of buoyancy of the vehicle prior to completing 

the integration of the equations of motion. The overall effect is a pitching moment that is proportional 

to the wave position over the body of the vehicle. Figure 5.1 presents the pseudocode for the wave 

algorithm. 
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for (1 to number of sections)     { 

Calculate wave motion buoyancy for this block 

if (depth > 20 ft) { 

Reduce wave buoyancy effect due to depth 

} 

Determine overall direction of wave motion 

}   //end of for loop 

for (1 to number of sections) { 

Adjust vehicle buoyancy based on wave motion 

Adjust center of buoyancy based on direction of wave motion and pitch angle 

} 

high-resolution buoyancy force calculation complete 

Figure 5.1. Pseudocode for wave motion effect algorithm. 

The next algorithm incorporated into the equations of motion provides the forces created by 

the submarine's flow field. As described in Chapter IV the flow field exists in the area of water 

surrounding the submarine. The implementation of this algorithm is more complex than that of the 

wave model. It requires several calculations for each section of the AUV body. Each one providing 

information for the next iteration down the body. Figure 5.2 contains pseudocode of the general 

algorithm. 

The first step is to determine whether or not the AUV is inside the influence field of the 

submarine. This is done by comparing the position of the AUV to the position of center of the 

submarine. Having knowledge of the volume of water which falls into the flow field allows for quick 

determination of whether or not submarine flow interactions must be calculated. 
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Compare the position of the AUV to that of the submarine 

if (inside flowfield) { 

Set flowfield flag to TRUE; 

} 

for (1 to number of sections ) { 

Calculate the x-position of the current section 

Calculate the y-position of the current section 

Calculate the z-position of the current section 

Determine the position of the AUV relative to the submarine center 

Index into flow field matrix and retrieve the flow force at that point, without interpolation 

} 

Calculate a rotation matrix to translate x,y,z force components into body coordinates 

for (1 to number of sections) { 

Translate current section forces into body coordinates 

//Cross Body Drag Contribution 

Calculate flow_field_sway_integral 

Calculate flow_field_surge_integral 

Calculate flow_field_heave_integral 

Calculate flow_field_roll_integral 

Calculate flow_field_pitch_integral 

Calculate flow_field_yaw_integral 

} 

Add flow field integrals to cross-body drag integrals 

Figure 5.2. Pseudocode for flow field algorithm. 
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Once it is determined that the AUV is inside the flow field, more detailed calculations are 

performed. These include finding the position of each section's center and the position of that section 

inside the flow field. Figure 5.3 demonstrates the geometry of calculating the x position of a section. 

Knowing the heading of the AUV and the orientation of the world axis, each coordinate position can 

be determined using simple geometry. A similar method is used for determining the y and z values 

for a section of the hull. 

Distance 
from AUV 
Center 

AUV_x 
Position 

AUV Heading 

Heading 
Difference 

Section X      X-Axis 

X = AUV_x + sin (90-Heading Difference) 
 * distance from AUV Center 

Figure 5.3. Geometry of calculating an AUV sections X position 
relative to the center of the AUV. 

Once the x, y, and z coordinates of a body section have been determined, they are used to 

calculate the position inside the flow field. This process takes two steps. First, the relative position of 

the AUV to the submarine is determined, then the relative coordinates are converted into flow-field 

indices. 

The X component represents the AUV position along the hull of the submarine with a value of 

zero ft meaning at the bow and 360 ft at the stern. The X value corresponds to the distance from the 

bow of the submarine in feet. This is determined by simply taking the difference between the X 
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position of the submarine and the X position of the AUV. 

The next relative position component is the radial distance of the AUV from the centerline of 

the submarine. It combines both the y and z positional components into a single number (Equation 

5.1). This is used because the construction of the flow field is such that the grid is anchored at the 

center of the submarine. To get at any particular position out from the hull the overall radial distance 

is needed as an index. 

RadialDist = -\j\Ydifference) +{Zdifference) (5.1) 

The conversion step takes the X-position with the radial distance and then converts the pair to 

flow field indices. The numbers cannot be taken directly because the grid has a resolution of Vi ft 

increments. This causes the grid positions to range from zero to 720 along the hull and zero to sixty 

out from the hull. The conversion simply takes the calculated coordinate and makes it into an integer 

position which can be used in the flow field system. 

Having the proper indices available it is now possible to retrieve the values of flow forces seen 

by the section of the AUV being considered. The flow induced forces are stored velocities in the 

world coordinate system. To apply them to the equations of motion in the local coordinate frame they 

are translated into body coordinates using equation (4.6). No interpolation is performed due to already 

high resolution, reducing computational complexity. The forces are then applied to the EOM by 

adding their effects into the calculation of cross-body drag. 

The algorithms for wave motion and body-induced flow forces are tightly interlaced in the 

dynamics code. Many of the calculations required for the wave model are also needed for the flow 

field and vice versa. By conducting the computations in tandem the added execution time is kept to a 

minimum. It enables an already computationally complex virtual environment the ability to become 

more accurate, yet still run in real-time. 

Other changes to the virtual environment involved additions to the viewer program. The 

viewer provides a window into the virtual environment. For the experiments conducted in this thesis 

it is necessary to visualize the AUVs approach and rendezvous with a submarine. In its initial 

incarnation the virtual environment did not contain a submarine. It was primarily used to develop 
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robot control algorithms for open water situations. It also provided a replica of the NPS test tank for 

small-area testing which might later be conducted in the actual tank. As the focus was moved away 

from small-area operations to open-water docking, a 688 class submarine model was added to the 

environment. The addition turned out to be an invaluable visualization tool and presented an added 

feeling of AUV scale in the open ocean. 

Implementing the wave buoyancy model and the body-induced flow algorithm in C++ 

provided an excellent stepping stone in the development process. Knowing the original version of the 

virtual environment was validated and sound allowed for quick isolation of possible modeling errors. 

Any instabilities encountered were localized to either of the new algorithms. It also provided the 

groundwork for the later implementation of dynamics in Java. In summary: development and 

implementation of the high-resolution models was successful. 

C.      JAVA AND VIRTUAL REALITY MODELING LANGUAGE (VRML) 

After proving the validity of the models proposed by this thesis, the next step was to provide a 

platform-independent version of the code. This was not possible using C++ and the Openlnventor 

API. C++ is plagued by compiler differences from one platform to another, and the Openlnventor API 

is primarily for Silicon Graphics workstations, although a port of the library to Windows95 has 

recently been completed. In any case the only way to provide true platform independence was to use 

languages which were not platform specific. For that reason Java in combination with VRML are the 

language of choice. 

The first portion of the virtual environment converted was the dynamics program and 

associated functions. This was a relatively straightforward port of C++ to Java. While some problems 

were encountered due to differences in language functionality (i.e. object handling, operator 

overloading, pointers, etc.) it was more time consuming than complex. Appendix B contains a list 

description of the code for the virtual environment dynamics in Java. The functionality and object 

hierarchy of the dynamics program is the same in the Java and C++ version, as is most program 

syntax. Flow field matrices proved too large for current PC Java implementation, so this section of 

code is commented out. 

The second step in the move towards platform independence was to re-implement a viewer 
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program in a platform-neutral way. VRML was used to describe the virtual environment scene graph 

with Java as the language to animate the objects in the environment. This gives anyone with an 

Internet browser (and appropriate VRML plug-in) the ability to view the virtual environment. 

The difficulties in porting the viewer to a platform independent scheme were primarily due to 

problems with Internet browsers and VRML plugins. Due to the early development stage of both of 

these technologies, many inconsistencies were encountered. These implementation problems were 

handled by the DIS-Java-VRML working group. Numerous work-arounds and problem solutions 

were developed in the working group forum. They provided the Java implementation of the DIS 

protocol and the bridge from multicast broadcast to unicast so the VRML scene can be animated via 

the script node. Figure 5.4 shows the underlying architecture of the Java-VRML version of the 

Phoenix AUV virtual environment. The source code for the VRML scene is available via references 

in Appendix B. The source for the DIS-Java-VRML library is available at 

[http:www. stl. nps. navy, mil/dis-java-vrml]. 

Execution Dynamics Bridge <-> Browser 

DIS 

Network 
Figure 5.4. Platform-independent architecture for Phoenix AUV virtual environment. 

The transition from a platform specific virtual environment to a platform-independent one is a 

large step forward in simulation technology. As personal computers become better and platform- 

independent languages more robust, this transition can only get easier. 
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D.     SUMMARY 

This chapter describes two separate implementations of the Phoenix AUV virtual 

environment.   The C++/OpenInventor version is an extension of the original virtual environment, 

providing the speed and additional functionality needed to perform the SBD of torpedo tube recovery, 

while still using a validated base environment for quick isolation of problems. The DIS-Java-VRML 

implementation gives the virtual environment portability. It is now possible to view simulations from 

any machine having Internet connectivity. 
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VI.   EXECUTION LEVEL AND VIRTUAL DOPPLER SONAR 

A. INTRODUCTION 

The Phoenix AUV execution level software controls all the hardware onboard the vehicle, 

ensuring all hard real-time deadlines are met. It uses a sense-decide-act loop to iterate through the 

process of polling sensor and effector state, deciding what actions are required and then commanding 

devices to the proper state. The devices that are controlled range from motors and servos to gyros and 

sonars. This chapter discusses a new sensor, a doppler sonar unit, which is simulated in the virtual 

environment and used for advanced control law testing. 

B. TRITECH DS30 PRECISION DOPPLER SONAR 

Doppler sonar works on the basic theory of measuring the frequency shift in a transmitted 

signal. The TRITECH DS30 precision doppler sonar is a highly accurate, reliable, compact unit 

designed for underwater vehicle use. It provides measurements of vehicle speed by analyzing the 

frequency shift in the back-scattered signal (MECCO, 1997). The DS30 is comprised of three major 

components: a digital micro controller, an analog control circuit, and a transducer. 

The digital micro controller controls the transmitter, the receiver, a Programmable Logic 

Device (PLD), and manages data communications to an external control device. Data output provides 

a bottom speed vector, water mass speed vector, and the current depth. Both vectors can be presented 

in either polar or rectangular format. The speed vectors are given in meters per second, with an 

accuracy of one centimeter per second and depth indication is accurate to one centimeter. 

Communication with the sonar is conducted through a 9600 baud serial line. This line handles both 

data output and command input. Figure 6.1 gives the specification data for the DS30. 
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Power 24VDC 

Power consumption 200 mA average, 1 A peak 

Operating frequency 1 MHz 

Operating range for seabed tracking 2-30 meters 

Tracking modes Velocity relative to seabed & velocity relative to seawater 

Data rate Up to 5 updates per second 

Communication RS232 as standard, RS485 as option 

Operating velocity 0-3.75 meters/second 

Velocity accuracy 2.5 centimeters/second 

Velocity resolution 0.5 centimeters/second 

Transducer 4 beam Janus array 

Configuration Convex, beams @ 45° to vertical 

Source level 217 dB re. 1 uPa @ 1 meter 

Depth rating lOOOmeters 

LenSth 360 millimeters including connector 

Body tube diameter 120 millimeters 

Maximum diameter 130 millimeters 

Weight in air 5.5 kilograms 

Weight in water 2 kilograms 

Figure 6.1. Tritech DS30 precision doppler sonar specification from (MECCO, 1997). 

The DS30 analog control circuit is comprised of one receiving channel and one transmitting 

channel. It achieves a four-channel system by multiplexing the receiver/transmitter circuits to each 

transducer element. The transducer is constructed with four elements, each at 45° offset from the 

normal axis (MECCO, 1997). Figure 6.2 is a picture of the DS30 mounted on the front of the Phoenix 

AUV. 
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Figure 6.2. Tritech DS30 precision doppler sonar mounted on the 
nose of the Phoenix AUV. 

The Tritech DS30 precision doppler sonar is a unit which is well suited to the Phoenix AUVs 

needs. It is an accurate sensor which can be easily integrated into the vehicle due to its low cost, low 

power requirements, and standard communication setup. The DS30 provides all the needed 

components to accurately measure cross-body flow and use that information for enhanced modes of 

AUV control. 
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C.      SONTEK ACOUSTIC DOPPLER VELOCIMETER (ADV) 

The Sontek acoustic doppler velocimeter (ADV) is another device which can be used to 

determine cross-body flow for the Phoenix AUV. It is an acoustic doppler current profiler and has the 

ability to determine water velocity in three component axis. The Sontek ADV works by measuring the 

velocity of a volume of fluid that is directly above its probe and has an accuracy of 0.1 

millimeters/second. This type of technology is designed to accurately measure ocean current, and it is 

well suited to be used as a cross-body flow sensor on the Phoenix AUV. The specifications for this 

device are given in Figure 6.3. Eventually in-water testing will also examine whether the velocity 

update rate is sufficient fast for real-time maneuvering control. 

Power 24VDC 

Power consumption 3 Watts average 

Operating frequency 10 MHz 

Data rate 0.1 to 25 Hz 

Communication RS232 

Operating velocity 2.5 meters/second 

Velocity resolution... 0.1 millimeters/second 

Depth rating 30 meters 

Length 407.9 millimeters including connector 

Body tube diameter 76.2 millimeters 

Maximum diameter 133.4 millimeters 

Figure 6.3. SonTek acoustic doppler velocimeter (ADV) specification from (SonTek, 1997). 

The Sontek ADV is a new device which is specifically designed forshallow water operations. 

Figure 6.4 is a picture of the SonTek ADV. This unit is currently being evaluated for use in the next 

incarnation of the Phoenix AUV. 
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Figure 6.4. Sontek acoustic doppler velocimeter (ADV). 
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D.      VIRTUAL SIMULATION OF DOPPLER SONAR 

Before a new sensor is integrated into the Phoenix AUV and deployed for in-water testing, 

SBD practices suggest that its use be simulated and evaluated first. To this end a virtual sensor was 

implemented to represent the Tritech DS30 precision doppler sonar. It was created to provide the 

same functionality in the virtual world as is expected from its performance in the open ocean 

environment. The simulation was developed in several steps to ensure accuracy of each portion of the 

model. 

First, the doppler sonar was integrated into the execution level code in function 

closed_loop_control_module(). In the sense phase of the execution level's sense-decide-act loop, 

variables were added to read the sensor input. Since the true hardware is not present in the simulation 

this was accomplished by adding the needed parameters to the state vector. The state vector represents 

the value (or state) of every sensor and effector in the vehicle. This is the information that is sent to 

the dynamics model to provoke the appropriate forces, or measure the needed quantities, in the 

surrounding virtual environment. 

The next step included the addition of a sensor model to the hydrodynamics code. This was 

necessary so the dynamics model might return proper values to the execution level, when the 

execution level indicated use of the doppler sonar via the state vector. For this thesis a simple zero- 

order model was constructed. The value returned by dynamics is the true error-free value of the 

quantity being measured. In other words, there is no error due to random noise or uncertainty inserted 

in the response. The assumption for beginning testing and evaluation is that the sensor will work 

exactly as described by the technical documentation on the sensor. Granted this is not always a valid 

assumption, nonetheless it is sufficient for initial testing. Random noise and errors can easily be 

incorporated at a later time, since it is more appropriate to examine performance failure modes after 

the sensor had been proven useful in the optimal case. 

The final step for sensor integration is to provide a facility to exercise all the control and data 

modes of the DS30. To accomplish this step, commands must be added to the execution level 

command language. The device itself has a series of roughly ten commands, ranging from reset to 

designating sampling frequency. During initial device testing it is only necessary to accurately parse 

the output data. The data provided by the unit in its normal mode contains both the unit's speed over 
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ground and the speed of the water column. These values are all that is needed for the cross-body flow 

calculation input to the vehicle control laws. Thus, implementation of a full command language for 

the unit was deferred as future work. 

The simulation of the Tritech DS30 precision sonar is a useful tool for testing and 

development of robot control modes. By separating the process into well defined components 

researchers are able to keep robot-specific code in one module and hydrodynamic code in another. 

The processes communicate via a state vector which is read by the robot execution level as if it were 

getting the data directly from the actual sensor. This makes the transition from the simulation 

environment to the real world transparent from the robot's point of view. 

E.      ENHANCED CONTROL LAWS 

The addition of any useful sensor is an iterative process. In order to improve vehicle control 

the sensor must be evaluated, prototyped, and integrated into the existing system. The Phoenix AUV 

control laws are no exception. These laws are finely tuned to provide a properly damped control 

system. The addition of a doppler sonar which can provide cross-body flow information requires the 

adjustment of these laws to incorporate (and take advantage of) the new information available. 

In order to use the information available from the doppler sonar unit, it is necessary to 

evaluate which positioning mechanism can best use this information. The question is primarily 

whether to adjust the control of the rudders, the fore and aft thrusters or both sets of effectors. In the 

case of the rudders, which are primarily used during forward transit, cross-body flow information is 

not significant. Since the employment of this sensor is envisioned to be a mechanism which allows 

the AUV to predict turbulent flow areas before the entire body is pushed unstable by them, rudders 

are not the most effective control devices. Instead the virtual cross-body flow sensor is used for 

adjusting thruster control laws. 

Thrusters can be used to orient the vehicle horizontally and counteract cross-body flow quite 

effectively. As the AUV moves into a turbulent area the sensed cross-body flow can be used to 

activate a thruster force counteracting the instability caused by the turbulence. Thus the thruster 

control laws are adjusted to include a term for cross-body flow data. Figure 6.5 gives the new thruster 

control law. 
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AUV_stern_lateral =   (- k_thruster_psi * normalize2(psi-psi_command) 

- k_thruster_r   * r) 

+ k_thruster_hover   * cross_track_distance 

- k_thruster_current   * AUV_oceancurrent_x 

* sin_psi 

+ k_thruster_current   * AUV_oceancurrent_y 

* cos_psi 

+ k_sway_hover        * v 

+ k_thruster_current   * cross_body_flow_u[ 12]; 

Figure 6.5. New thruster control law for the AUV stern lateral thruster. 

This new control law can be written in two ways: as a straight sensor input or as a smart 

sensor. The straight sensor input takes the value sensed by the doppler sonar and uses it in the forward 

lateral thruster control law since that is the relative location of the physical sensor. A smart sensor is 

one which "dead reckons" the sensed cross-body flow using the vehicles recent movement history and 

can predict the flow at both forward and aft lateral thrusters. In this case both thrusters can be 

effectively employed to counteract the turbulent flow encountered. Both of these control law options 

were implemented and tested. The results are presented in Chapter VII. 

The integration of a new sensor into AUV control is a significant task. Simulation testing 

shows that the doppler sonar sensor provides useful information which needs to be integrated into 

vehicle control. This section presented an alteration to the vehicle control laws for cross-body 

thrusters in addition to two methodologies for sensor employment. These are the first attempts at 

harnessing the wealth of information available from such a useful piece of equipment. 

F.      SUMMARY 

The abilities of the Phoenix AUV to see the environment in which it operates are limited by its 

sensor suite. Improving the way the AUV observes the environment and increasing sensory input 
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provides additional information for vehicle control law action. In order to thoroughly test the use of 

these sensors, they must be integrated into the execution level code and tested in the target 

environment. One such device which appears to greatly improve vehicle control is a precision doppler 

sonar. This chapter demonstrated the simulation of a precision doppler sonar and the integration of its 

output information into enhanced vehicle control laws. The results acquired from simulating such a 

sensor demonstrate how useful the information is to AUV control and the significance of sensor 

simulation in the vehicle design process. 

-75- 



-76- 



VII. SIMULATION RESULTS 

A. INTRODUCTION 

This chapter outlines and presents experiments conducted to validate the simulations 

implemented in this thesis. The experimental design is addressed along with the measures used to 

qualify and quantify results. Then the final results are presented in concise tables which are supported 

by plots provided in Appendix C. 

B. DESIGN OF EXPERIMENTS 

When developing tests to validate the implemented cross-body flow and associated AUV 

control algorithms, it is necessary to examine two areas: the high-resolution buoyancy model with 

wave action effects, and the flow field interaction algorithm. In order to properly test each area 

separate experiments were designed. Each experiment focuses on the concerns associated with the 

particular application being tested. 

For the testing of the high-resolution buoyancy model, a series of simple missions were 

conducted under various sea-state conditions. During these experiments the Phoenix AUV was placed 

on a base course heading into the sea at a speed which was high enough to allow the vehicle to 

maintain heading, while low enough to prevent vehicle control from masking the effects of the sea. 

The mission script used (mission.script.SeaStateTest) is included in Appendix C. 

During these tests it was also necessary to determine specific factors which might be used to 

quantify and qualify the results that were found. In terms of vehicle stability while heading into a sea 

the primary factors of concern are maximum pitch angle and pitch rate. These parameters are 

appropriate because they directly indicate the vehicle's stability and ability to maintain control as it 

moves through the seas. 

The termination consideration for these tests is determination of what sea state to end the 

analysis. While the hydrodynamics model may be able to produce a sea state ranging from one to 

nine, at some point the vehicle becomes so unstable that its presence is not worthwhile. Thus the 

analysis range from minimal sea states (1) to a sea state in which the vehicles stability was in 

questionable for greater than 50% of the run. 
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In the first group of experiments, the high-resolution buoyancy model is tested in sea states 

ranging from one to a sea in which the vehicle does not maintain stability. During each exercise the 

AUV proceeded on a course directly into the sea at a speed high enough to maintain steerage. These 

runs fully exercised the high resolution buoyancy model and the wave motion simulation. The 

experiments are designated SS.l through SS.5 corresponding to sea states one through five. 

The second set of experiments are aimed at testing the flow-field simulation and vehicle 

control using cross-body flow sensor input. The goal is to bracket the torpedo tube docking problem 

by running experiments in flow conditions which ranged from lower than expected turbulence levels 

to well above expected turbulence levels. Additionally, the results with the cross-body sensor 

available are compared to runs with the sensor absent. Table 7.1 shows the naming convention for all 

of the experiment variations. 

No Flow Field Normal Flow Field Extreme Flow Field 

No Flow Sensor Experiment CBF. 1 Experiment CBF.2 Experiment CBF.3 

Flow Sensor Experiment CBF.4 Experiment CBF. 5 Experiment CBF.6 

Smart Control Sensor Experiment CBF.7 Experiment CBF. 8 Experiment CBF.9 
Table 7.1. Variation of conditions for experimental cross-body flow (CBF) missions. 

While running the CBF missions, three criteria were chosen to quantify observed results: 

vehicle distance from track, time to regain track in turbulence and whether or not the vehicle collided 

with the submarine hull during the docking mission. These parameters are appropriate because they 

directly address AUV survivability during torpedo tube recovery. If flow perturbations cause 

significant variance from the preplanned track, then AUV endurance and control become a concern. If 

collision occurs, then safety of the AUV and the submarine become significant. Thus these metrics 

provide a useful measure of AUV performance in the presence of turbulent flow. In each run the 

commanded path was identical, as specified by the mission script mission.script.FlowFieldTestLoop 

included in Appendix C. 

The combined results of these experiments provide a sound measure of the algorithms 

developed in this thesis. They address the performance of the high-resolution buoyancy model, the 
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wave motion simulation, the turbulent flow field simulation, and the cross-body flow sensor control 

algorithm. These simulation experiments also serve to illustrate the accuracy of the physically based 

models they are derived from. Any errors in a cross-coupled model as complex as vehicle dynamics 

will almost certainly cause vehicle instability in the virtual environment. 

C.      RESULTS 

The experiments described in the previous section were conducted ising the Phoenix AUV 

execution level and the C++ implementation of the virtual environment. The results were measured in 

terms of the metrics discussed, collected in the form of parameter graphs included in Appendix C and 

summary tables presented in this chapter. 

The experiment which exercised the high-resolution buoyancy model and the wave motion 

simulation provided interesting results. The vehicle was able to maintain stability in sea states ranging 

from zero to five. In sea state five the vehicle was unstable for roughly 60% of the 5 minutes that the 

run lasted. Nevertheless, the control algorithms were able to maintain a relatively stable attitude while 

the vehicle was moved by large wave swells. Vehicle pitch rate and maximum pitch angle varied 

greatly between sea states as expected. Table 7.2 contains the data addressing these metrics. Worth 

noting is the dramatic increase in pitch rate and pitch angle when the sea state progressed from four to 

five. It is likely that shorter sampling rates, modified control coefficients and the predictive control 

algorithm specified in (Riedell, Healey, 1998) can improve performance even further. Surprisingly the 

vehicle was able to maintain control in sea states well above what was expected. Further in-water 

testing is definitely needed to validate these results. 

Experiment SS.l SS.2 SS.3 SS.4 SS.5 

Pitch rate 
(deg/sec) 

0.2 1.0 1.5 4.5 11.0 

Maximum 
pitch angle 

(deg) 

0.35 
(0.15 avg) 

1.0 
(1.0 avg.) 

3.0 
(1.5 avg.) 

7.0 
(4.5 avg) 

40.0 
(11.0 avg.) 
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Approximate 
amount of 

time vehicle 
was unstable 

0% 0% 1% 15% 60% 

Table 7.2. Experimental results of AUV stability in various sea states 

The results from the experiment which tested vehicle control in the flow field are also 

significant. For the most part the results are as expected. The first metric used, collision with the hull, 

gives a boolean result for each run. Table 4.3 contains the data collected for runs under all of the 

various conditions. In the no flow and normal flow conditions, vehicle control was stable enough to 

prevent the AUV from colliding with the submarine hull. In the extreme flow case the AUV collided 

with the hull in every case, regardless of sensor control. The point at which collision occurred was at 

the pump suction inlet along the hull. In the extreme case the suction flow simulates a flow of 1.3 

knots vice 1.0 knot in the normal flow case. This slight increase in flow force creates a significant 

problem for AUV control. Despite flow turbulence near the torpedo tube door, no collisions occured 

in the door area. 

Flow Regime 

No Flow 

Normal Flow Profile 

Extreme Flow Profile 

No Sensor 

CBF.l: No Collision 

CBF.4: No Collision 

CBF.7: Collision at 
pump suction only 

Simple Control Sensor 

CBF.2: No Collision 

CBF.5: No Collision 

CBF.8: Collision at 
pump suction only 

Smart Control Sensor 

CBF.3: No Collision 

CBF.6: No Collision 

CBF.9: Collision at 
pump suction only 

Table 7.3. Cross-body flow (CBF) experimental results of AUV collision with submarine hull 

ture 

The other measures evaluated are the overall distance the vehicle departed from its pre- 

planned track due to turbulent flow and how long it took to return to track after departure. Departi 

from track was measured in the most turbulent areas within the flow field: the pump suction, pump 

discharge, and torpedo tube door docking. Table 7.4 presents the results of these measures at the three 

points for each experiment. These results are as expected when moving from one flow condition to 

another. Yet the results within each condition show that the cross-body flow sensor input to thruster 
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control has no significant effect on distance from track, but does aid in the time needed to get back on 

base course. The lower return times are most likely due to the fact that the thrusters are helping to 

stabilize the vehicle when the cross-body flow sensor is used. More accurate testing of the adjusted 

control laws is needed. Nevertheless, the control results are promising. The additional sensor does in 

fact provide some additional thruster control ability. It is left to future researchers to implement a 

more effective control law. 

Flow Condition Position No Sensor Simple Control 
Sensor 

Smart Control 
Sensor 

No Flow Distance from track at 
pump discharge (feet) 

0 0 0 

No Flow Time to regain track 
(seconds) 

0 0 0 

No Flow Distance from track at 
pump suction (feet) 

0 0 0 

No Flow Time to regain track 
(seconds) 

0 0 0 

No Flow Distance from track at 
torpedo tube entry 

(inches) 

0 0 0 

No Flow Time to regain track 
(seconds) 

0 0 0 

Normal Flow 
Profile 

Distance from track at 
pump discharge (feet) 

13 13 13 

Normal Flow 
Profile 

Time to regain track 
(seconds) 

55 52 45 

Normal Flow 
Profile 

Distance from track at 
pump suction (feet) 

5 5 5 

Normal Flow 
Profile 

Time to regain track 
(seconds) 

44 43 40 

Normal Flow 
Profile 

Distance from track at 
torpedo tube entry 

(inches) 

8.7 6.5 6.0 
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Normal Flow 
Profile 

Time to regain track 
(seconds) 

N/A N/A N/A 

Extreme Flow 
Profile 

Distance from track at 
pump discharge (feet) 

18 18 18 

Extreme Flow 
Profile 

Time to regain track 
(seconds) 

60 57 56 

Extreme Flow 
Profile 

Distance from track at 
pump suction (feet) 

10 10 10 

Extreme Flow 
Profile 

Time to regain track 
(seconds) 

47 44 42 

Extreme Flow 
Profile 

Distance from track at 
torpedo tube entry 

(inches) 

10.3 9.6 8.7 

Extreme Flow 
Profile 

Time to regain track 
(seconds) 

N/A N/A N/A 

Table 7.4. AUV distance from track under various cross-body flow (CBF) experiment conditions. 

The results arrived at in these experiments provide useful insight into the algorithms 

implemented in this thesis. The high-resolution buoyancy model, the wave motion simulation and the 

turbulent flow field simulation appear to be accurate and give consistent results which are in line with 

expectations. On the other hand, the experiments also demonstrate that the control algorithms which 

use doppler sonar input for cross-body flow measurement need to be tuned. The virtual environment 

thus provides a useful tool for control law testing, which can be further improved by incorporation of 

results from in-water validation tests. 

D.      SUMMARY 

Experiments are a useful tool in any researcher's repertoire. They serve to verify the theories 

upon which technological innovations are based. This chapter presents the design of experiments that 

are performed in simulation and used to test the models developed in this thesis. The experiments 

address testing of the high-resolution buoyancy model, the wave motion simulation, turbulent flow- 

field simulation, and enhanced vehicle control using a doppler sonar employed as a cross-body flow 
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sensor. Additionally, design of experiments and the metrics used to measure results are discussed to 

provide the reader with a good understanding of what success is based on. These experiments are a 

useful means to rigorously test the Phoenix AUV dynamics model. The simulation results give hard 

data demonstrating the stability and accuracy of the hydrodynamics model and associated cross-body 

flow control laws. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONTEXT 

This thesis has taken an in-depth look at methods of modeling environmental effects in a 

virtual environment. The net result is a virtual environment for the NPS Phoenix AUV which is more 

robust and better simulates the environment for which the AUV is being designed. These 

improvements are aimed at enhancing the SBD process, allowing engineers to rigorously test the 

performance of AUV systems prior to deployment in the vehicle. 

B. RESEARCH CONTRIBUTIONS AND CONCLUSIONS 

Throughout this thesis the intention has been to provide solutions to real-world problems. 

With that in mind, even simulation results provide useful contributions to the modeling community 

along with interesting experimental results for those concerned with autonomous robot simulation. 

The simulation enhancements include a high-resolution buoyancy model for wave simulation, an 

extensible body-induced flow methodology, and an approach to platform-independent distributed 

simulation environments. 

The high-resolution buoyancy model divides the modeled vehicle into fifteen separate 

sections. Each one is then evaluated for its contribution to the overall vehicle buoyancy. This 

approximation gives an accurate representation of vehicle posture at shallow depths in various sea 

states. It proved to be quite useful when evaluating vehicle operation in various broach postures. Once 

fully submerged, at a depth where no portion of the vehicle is consistently exposed, its more accurate 

modeling characteristics were less apparent, again as expected. The high-resolution buoyancy model 

is a needed improvement with no noticeable consequence in terms of real-time performance. 

The ability to test AUV control in various sea states also turned out to be a significant 

improvement in vehicle modeling. The effects of wave motion come into play in shallow-water 

operations as well as during submarine docking evolutions. At shallow the forces of wave motion 

cause changes in vehicle velocities, accelerations and buoyancy. These factors need to be considered 

when fine-tuning control algorithms. They bring to light possibilities of over-sensitve control laws 

which can cause vehicle hunting and instability. During docking evolutions at submarine periscope 

depth, wave movement is also a factor. Although increasing depth for this type of operation reduces 
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wave-induced forces, they are still present and need to be dealt with. 

Another improvement in functionality of the virtual environment is the ability to simulate 

body-induced flow forces. The methodology used for this simulation is completely extensible. As 

researchers desire to change flow conditions, a simple data file replacement can import the new flow 

field into the virtual environment. By bracketing the submarine docking problem with worst-case and 

best-case flow instability, simulation results indicate that a feasible solution exists. A slight 

modification to current torpedo tube door mechanisms might thus provide an avenue to AUV 

recovery by naval submarines. 

The use of a doppler sonar to determine cross-body flow is also evaluated. This type of sensor, 

having the ability to provide speed over ground or speed through the water, enabled enhanced AUV 

control in complex flow fields. Its employment allows the robot to predict and compensate for 

movement instability using real-time flow condition feedback. Initial evaluation of doppler sonar 

demonstrates that the sensor, when properly used, provides irreplaceably valuable inputs for vehicle 

control. 

Finally, this thesis shows that platform-independent 3D real-time simulations are possible. 

The use of platform-neutral programming languages coupled with the rapidly increasing performance 

of personal computers has brought the ability to run complex distributed simulations anytime, 

anywhere. As network bandwidth continues to improve and PC performance is enhanced, platform- 

independent simulations will continue to get better and become more popular. 

C.      RECOMMENDATIONS FOR FUTURE WORK 

On the technological frontier there are always things to do. Breakthroughs in technology 

happen at an amazing rate, with each new discovery bringing a new piece of gear or programming 

paradigm to light. As these developments occur it will continue to be necessary to thoroughly test and 

evaluate new technologies. The virtual environment is the ideal place for testing potential AUV 

hardware and software. 

This thesis falls short in the test and evaluation of the modeling technology proposed due to 

the lack of in-water tests. To remedy this situation, a series of tests need to be conducted to validate 

both the wave model and the complex body-induced flow interaction algorithm. These additions to 
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the virtual environment provide exceptional insight into vehicle behavior, but these results need not 

be broadly accepted until all doubt is laid to rest through validating in-water tests. 

Another area for future consideration involves both the execution level code and the dynamics 

code. The current versions of these programs use standard British units. Yet the DIS protocol requires 

metric units in its broadcast standard. This difference caused some inaccurate results during the 

prototyping stages. In some cases formulations appeared to be correct but unit differences caused 

erroneous results. After extensive troubleshooting all units were corrected and the results verified. For 

future development a single set of units (metric since DIS requires it) needs to be implemented in 

both the execution level code and the dynamics code. 

This thesis also proposes that a doppler sonar be used as a cross-body flow indicator onboard 

the Phoenix AUV. The simulation model for the doppler sensor used in this thesis was a simple one, 

lacking any noise distribution. Nonetheless, simulation of such a sensor demonstrates it can provide 

significant control enhancements. Further work is needed in simulation enhancement. Comparisons 

need be made between perfect data and expected (noisy) real-world data. As the NPS AUV research 

group moves towards the third incarnation of the Phoenix AUV it will be interesting install and test 

the DS30 doppler sonar. An instrument of this nature will likely enable very precise control of the 

robot in dangerous operating environments. 

Another useful extension for robot development will be the integration of a depth-sensing 

model coupled with real-world terrain topology (Leaver, 1998). It is also useful to move the virtual 

world into the domain of testing sensor and effector performance in various acoustic environments. 

This is a significant step forward from the generic environment testing currently performed, enabling 

researchers to test equipment in a virtual Monterey Bay, then test in the real bay. It will likely 

eliminate errors normally attributed to environmental considerations. 

Other sensors to be enhanced in virtual simulation are the ST725 and ST1000 sonars. These 

sonars were modeled using several scan modes, employed in numerous different execution level 

tactics by (Davis, 1996). While the modes are accessible to all for low-level control, a simplification 

is required allowing for easier scan mode selection. Addition of manual steering along a true bearing 

during the final stages of thesis testing added a new sensor value: lateral range (and range rate) to the 

submarine maintaining steady course and speed. An enumeration of all sonar modes and their addition 

to the execution command language will be useful in future tactic development. 

-87- 



Animation is a vital part of any virtual environment simulation. Helping humans visualize the 

interactions taking place in the environment. It is one of the key reasons virtual simulations are even 

created. The Phoenix AUVs virtual environment is an irreplaceable resource. Continued use of virtual 

environment visualization and experimental validation will continue to provide invaluable insight. 
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APPENDIX A. VIRTUAL ENVIRONMENT C++ CODE 

1. UUVBody.C Excerpt 

1111111111111111111111111111111111111111111111111111111111111111111111111111111 
i* 
Program: UUVBody.C 

Description:      Six degree-of-freedom underwater vehicle hydrodynamics 
based on Healey model 

Revised: 

System: 

Compiler: 

Compilation: 

Author: 

EOM Revisions: 

Dissertation: 

Advisors: 

References: 

24 February 98 

Irix 5.3 

ANSI C++ 

irix> make UUVBody.o 
irix> CC UUVBody.C -lm -c -g +w 

-c == Produce binaries only, suppressing the link phase. 
+w == Warn about all questionable constructs. 

Don Brutzman 
Code UW/Br 
Naval Postgraduate School 
Monterey CA 93943-5000 

brutzman@nps.navy.mil 

408.656.2149 work 
408.656.3679 fax 

Jeff Riedel, FEB 97:  removed extra cross-body flow terms 
Kevin Byrne, FEB 98:  high-resolution buoyancy, cross-body flow 

Brutzman, Donald P. , A Virtual World for an Autonomous 
Underwater Vehicle, Ph.D. Dissertation, Naval Postgraduate 
School, Monterey California, December 1994.  Available at 
http://www.stl.nps.navy.mil/~brutzman/dissertation/ 

Brutzman, Donald P., Software Reference:  A Virtual World 
for an Autonomous Underwater Vehicle, technical report 
NPS-CS-010-94, Naval Postgraduate School, Monterey 
California, December 1994.  The accompanying public 
electronic distribution of this reference includes source 
code and executable programs.  World-Wide Web (WWW) 
Uniform Resource Locator (URL) is 
http://www.stl.nps.navy.mil/~auv 

Dr. Mike Zyda, Dr. Bob McGhee. and Dr. Tony Healey 

Healey, A.J. and Lienard, D., "Multivariable Sliding Mode 
Control for Autonomous Diving and Steering of Unmanned 
Underwater Vehicles," IEEE Journal of Oceanic Engineering, 
vol. 18 no. 3, July 1993, pp. 327-339. 

Yuh, J., "Modeling and Control of Underwater Robotic 
Vehicle," IEEE Transactions on Systems, Man and Cybernetics, 
vol. 20 no. 6, November/December 1990, pp. 1475-1483. 

Press, William H., Teukolsky, Saul A., Vetterling, 
William T. and Flannery, Brian P., "Numerical Recipes in C," 
second edition, Cambridge University Press, Cambridge 
England, 1992. 

Marco, David, "Autonomous Control of Underwater Vehicles 
and Local Area Maneuvering," Ph.D. dissertation. Naval 
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Postgraduate School, Monterey California, September 1996. 

Status: 

Fossen, Thor I., _Guidance and Control of Ocean Vehicles_, 
John Wiley and Sons, Chichester England, 1994. 

Bacon, Daniel Keith, Jr. "Integration of a Submarine into 
NPSNET," Master's Thesis, Naval Postgraduate School, 
Monterey, California, September 1995.  Available via 
http://www.npsnet.nps.navy.mil/npsnet/publications.html 

Equations of motion tested satisfactorily, 
verification against in-water tests remains. 

Added buoyancy and center-of-buoyancy changes at surface 
based'on Dan Bacon's thesis work. 

Housekeeping: move utilities to math utilities.c 

Future work: Comments and suggestions are welcome! 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIII 

//****< Excerpt Follows ******** // 

II- ■II 

void UUVBody:: integrate_equations_of_motion () 

// mission clock was reset, rezero the dynamics model 

int MAX_ACCELERATIONS_EXCEEDED = FALSE; 

current_uuv_time = AUV_time; 

double dt       = current_uuv_time - time_o'f_posture_value (); 

if (dt < 0.0) 
{ 

current_uuv_time  = AUV_time; 
set_time_of_posture (AUV_time); 
set_velocities    (0.0, 0.0, 0.0, 0.0, 0.0, 0.0); 
set_accelerations (0.0, 0.0, 0.0, 0.0, 0.0, 0.0); 
dt = 0.0; 
U  = 0.0 
V  = 0.0 
W  = 0.0 
P  = 0.0 
Q = 0.0 
R  = 0.0 

} 

double rho2 
double L2 
double L3 
double L4 
double L5 

= rho / 2.0; 
= L * L; 
= L * L * L; 
= L * L * L * L; 
= L*L*L*L' L; 

// note that sign is not preserved in the following squared variables 
//     in order to present consistent naming with Healey reference paper. 
//     To preserve sign, use (U * fabs (U)) etc. 
double P2       = P * P; 
double Q2 
double R2 

// double U2 
double V2 
double W2 

= Q * Q 
= R * R 
= U * U 
= V * V 
= w * w 
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// calculate world coordinate posture rates, use holding variables for speed 

double PHI 
double THETA 
double PSI 

double sinPHI 
double cosPHI 
double sinTHETA 
double cosTHETA 
double sinPSI 
double cosPSI 

phi_value 0 
theta_value 0 
psi_value 0 

sin (   PHI ); 
cos (   PHI ); 
sin ( THETA ); 
cos ( THETA ); 
sin (   PSI ); 
cos (   PSI ); 

// clamp inputs to max values allowed in hydrodynamics coefficients file 
if (MAX_RPM > 0.0) 
{ 

// 

clamp (& AUV_port_rpm, -MAX_RPM,    MAX_RPM, 
clamp (& AUV_stbd_rpm, -MAX_RPM,    MAX_RPM, 

"AUV_port_rpm"); 
"AUV_stbd_rpm"); 

} 
if (MAX_PLANE > 0.0) 
{ 

clamp (& AUV_delta_planes, -radians (MAX_PLANE),  radians (MAX_PLANE), 
"AUV_delta_planes"); 

} 
if (MAX_RUDDER > 0.0) 
{ 

clamp (& AUV_delta_rudder, -radians (MAX_RUDDER), radians (MAX_RUDDER), 
"AUV_delta_rudder"); 

} 
if (MAX_THRUSTER > 0.0) 
{ 
clamp(& AUV_bow_lateral,   -MAX_THRUSTER,MAX_THRUSTER,"AUV_bow_lateral"); 
clamp(& AUV_stern_lateral, -MAX_THRUSTER,MAX_THRUSTER,"AUV_stern_lateral") ; 
clamp(& AUV_bow_vertical,  -MAX_THRUSTER,MAX_THRUSTER,"AUV_bow_vertical"); 
clamp(& AUV_stern_vertical,-MAX_THRUSTER,MAX_THRUSTER,"AUV_stern_vertical"); 

} 

// finish initializations 
double delta_planes_stern 
double delta_planes_bow 
double delta_rudder_stern 
double delta rudder bow 

// 
AUV_delta_planes; 

- AUV_delta_planes; 
AUV_delta_rudder; 

- AUV_delta_rudder; 

// Zero ordered thruster values if no thrusters present 
AUV_bow_lateral   *= THRUSTERS; 
AUV_stern_lateral *= THRUSTERS; 
AUV_bow_vertical  *= THRUSTERS; 
AUV_stern_vertical*= THRUSTERS; 

// double EPSILON epsilon (); //no longer used in revised model 

//**************************F^ag for  wave Model 
//Moved Variable definition for visibility throughout both models 
double  sway_integral = 0.0 
double heave_integral = 0.0 
double pitch_integral = 0.0 
double  yaw_integral =0.0 
double roll_integral =0.0 
double surge_integral = 0.0 
double U_cf_x; 

if (WAVE_BOUYANCY_MODEL ==0)  { 
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// // 

if 
{ 

// calculate neutral buoyancy using center of buoyancy near surface ---II 

(AUV_z <= H / 2.0) /* transition, calculate broach extent */ 

if   (AUV_z >= -(H / 2.0))       /* broach region, reduce buoyancy     */ 

revisedBuoyancy = Buoyancy * (AUV_z + H/2.0)/ H; 

else revisedBuoyancy = 0.0;      /* completely out of the water        */ 

else   revisedBuoyancy = Buoyancy; /* > H/2, no broach, normal submerged  */ 

This picture shows the condition (AUV_z == H / 2.0) which is the 
transition point above which revisedBuoyancy begins to drop off. 

revisedBuoyancy will = 0 when (AUV_z <= - H / 2.0) 

Severe buoyancy changes result when AUV position magically begins 
at depths so shallow that the AUV is initially above the surface. 

1 
-   H 

1 

1 
-   H/2 

1 
0 

1 
0 

1 
+ 

1 
+   H/2 

1 
+ +  H 

surface 

depth down (positive increasing z) 

// if boat is broaching and pitch THETA is positive, perform an approximate 
// calculation of how center of buoyancy CB moves back towards stern 

/ nose_length is defined in UUVmodel.H and stays fixed 

f      ((THETA ==0.0) || (AUV_z >= H / 2.0)) 

revised_x_B = x_B; // prevent divide-by-zero case and too-deep case 

lse if (THETA > 0.0) 

surface_length = AUV_z /     sinTHETA; 

else if (THETA < 0.0) 

surface_length = AUV_z / (- sinTHETA); // roughly symmetric fore+aft 

:lse 

cout « "Unexpected case in revised CB calculation!" « endl; 
revised_x_B = x_B; // prevent divide by zero case 
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if ((THETA != 0.0) && (surface_length < nose_length) && (AUV_z <= H / 2.0)) 
// move x_CB aft (fwd) but only if nose (stern) broaches the surface 
C 

revised_x_B = x_B - (nose_length - surface_length) * sinTHETA / 2.0; 
} 

if (TRACE || TRACE_EOM || (revisedBuoyancy != Buoyancy)) 
{ 

cout « "revisedBuoyancy = " « revisedBuoyancy « ", " ; 
cout « "Weight = " « Weight         « ", " ; 
cout « endl ; 
cout « " surface_length = "  << surface_length << ", " ; 
cout « "nose_length = " « nose_length    « ", " ; 
cout « "revised_x_B = " « revised_x_B    « endl; 

} 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

II   integrate drag forces over the vehicle -----------------// 
// corresponding to cross-body flow.  Use cross-sectional slices. - - - - -// 

double dx; 

// traverse longitudinal centerline:  index through x coordinate arrays 
for (int x_index = 0; x_index < cross_sections-l; x_index ++) 
{ 

dx = fabs (xx [x_index] - xx [x_index + 1]); 

U_cf_x = sqrt (  square (V + xx [x_index] * R) 

+ square (W - xx [x_index] * Q)); 

if (U_cf_x > 1.0E-6) // arbitrary small non-0 minimum 
{ 

sway_integral  +=  rho2 * ( C_dy * hh [x_index] 

* square '( (V + xx [x_index] * R) ) ) 

// removed from model + C_dz * bb [x_index] 
// * square ((W - xx [x_index] * Q))) 

* (V + xx .[x_index] * R) * dx / U_cf_x; 

heave_integral +=  rho2 * ( 

// removed from model C_dy * hh [x_index] 
// * square ((V + xx [x_index] * R) ) 

+ C_dz * bb [x_index] 
* square ((W - xx [x_index] * Q))) 

* (W - xx [x_index] * Q) * dx '/ U_cf_x; 

pitch_iritegral +=  rho2 * ( 

// removed from model C_dy * hh [x_index] 
// * square ((V + xx [x_index] * R)) ) 

+ C_dz * bb [x_index] 

* square ((W - xx [x_index] * Q))) 

* (W - xx [x_index] * Q) 
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// A note sign correction 

* xx [x_index] * dx / U_cf_x; 

yaw_integral +=  rho2 * ( C_dy * hh [x_index] 

* square ((V + xx [x_index] * R)) ) 

// removed from model + c_dz * bb [x_index] 
// * square ((W - xx [x_index] * Q))) 

* (V + xx [x_index] * R) 

* xx [x_index] * dx / U_cf_x; 
} 

} 
if (TRACE || TRACE_EOM) 
{ 

cout « »dx = " « dx « ", U_cf_x = " « U_cf_x 
« ", sway_integral  = " « sway_integral « endl; 

cout « "dx = » « dx « ", U_cf_x = " « U_cf_x 
« ", heave_integral = " « heave_integral « endl; 

cout « "dx = " « dx « ", U_cf_x = " « U_cf_x 
« ", pitch_integral = " « pitch_integral « endl; 

} 

cout « "dx = • « dx « ", U_cf_x = " « U_cf_x 
« ", yaw_integral  = " « yaw_integral « endl; 

}  // end old bouyancy model 
else if (WAVE_BOUYANCY_MODEL == TRUE) { 

int   in_sub_flow_field = 0; 
int   pw_flowfield_x[cross_sections]; 
int   pw_flowfield_r[cross_sections]; 

//required variables for piecewise calculations of wave motion effects 
double pw_AUV_x[cross_sections]; 
double pw_AUV_y[cross_sections]; 
double pw_AUV_z[cross_sections]; 
double pw_nose_length[cross_sections]; 
double pw_surface_length[cross_sections]; 
double pw_dx[cross_sections]; 
double pw_revised_x_B[cross_sections]; 
double pushup[cross_sections]; 
double pw_revisedBouyancy[cross_sections]; 
double x_difference; 
double y_difference; 
double z_difference; 
double AUV_TTube_z_di f ference; 
double AUV_SUB_Course_difference = 0.0; 
double grid_x_difference = 0.0; 
double grid_r_difference =0.0; 
double flow_force_direction[cross_sections]; 
double K_waves = 0.4;     //This is a factor used to reduce wave effects. Otherwise 

vehxcle goes unstable. 
double temp_doppler_stw_u = 0.0; 
double temp_doppler_stw_v = 0.0; 

Vector3D U_waves[cross_sections]; 
Vector3D pw_UVW; //Holds piecewise flow velocities in AUV frmae of 

reference 
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Vector3D flow_force_magnitude[cross_sections];    //This holds x-dot, y-dot, z-dot in 
sub ref frame 

Hmatrix flow_rotation_matrix; //This is used to move flow vector from 
the sub's (ft/sec) 

//Additions to the equations of motion 
double flow_field_sway_integral = 0.0 
double flow_field_surge_integral = 0.0 
double flow_field_heave_integral = 0.0 
double flow_field_roll_integral = 0.0 
double flow_field_pitch_integral = 0.0 
double flow_field_yaw_integral = 0.0 

if (SUBMARINE_DOCKING == TRUE) { 

//Check to se if AUV is in the influence field of the submarine 
//This conversion uses 0.3048 meters per foot or 3.281 ft per meter 
x_difference = (AUV_x - submarine_x); 
y_difference = (AUV_y - submarine_y); 
z_difference = (AUV_z - submarine_z); 

//The order of AUV and TT is reversed to get sign correct since +z is down 
AUV_TTube_z_difference = torpedotube_z - AUV_z; 

//All box calculations are in feet, here we convert to meters and 
//then compare 
//The 15in y calc accounts for sub diameter of 30 ft, radius = 15 ft 
if ((fabs(x_difference)) <= (flowfieldbox_length * FLOWFIELDLENGTH )  && 

(fabs(y_difference)) <= (flowfieldbox_width  * FLOWFIELDWIDTH + 15.0 )  && 
(fabs(z_difference)) <= (flowfieldbox_height * 40.0 )) { 

//set flag to perform pdecewise calculations 
in_sub_flow_field = 1; 

//calculate difference in AUV and sub course + speed 
AUV_SUB_Course_difference = submarine_course - AUV_heading,- 

} //end of if in flow field 
}   //end if SUBMARINE_DOCKING 

//Loop through body to Initialize all Arrays, perform piecewise calculations 
for (int x_index = 0; x_index <= cross_sections - 1; x_index++) 
{ 

pw_dx[x_index] = fabs(xx[x_index] - xx[x_index + 1]); 

if (x_index ==0) { 
pw_nose_length[x_index] = pw_dx[x_index]/2.0; 

} 
else { 

pw_nose_length[x_index] = pw_dx[x_index]/2.0 + pw_nose_length[x_index - 1] + 
pw_dx[x_index - 1 ] / 2 . 0; 

} 

//Calculate pushup - the amount this sections pw_AUV_z differes from the overall 
AUV_Z 

pushup[x_index] = (xx[x_index] + pw_dx[x_index]/2.0) * sinTHETA; 

//Calculate pw_AUV_z 
pw_AUV_z[x_index] = AUV_z - pushup[x_index]; 

//Here we perform all calulations for piecewise flow field forces 
//if AUV is in sub torpedotube area 
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sub 

if (in_sub_flow_field == TRUE) { 

//Calculate an exact x & y for each section 
pw_AUV_x[x_index] = AUV_x + (sin(90 - AUV_SUB_Course_difference) * 

(xx[x_index] + pw_dx[x_index] / 2 . 0) ) ; 

pw_AUV_y[x_index] = AUV_y + (sin(AUV_SUB_Course_difference) * 
(xx[x_index] + pw_dx[x_index]/2.0)) ; 

//Translate the x and y into grid coordinates based on position relative to sub 
//this takes position in feet and gives diff in ft 
grid_x_difference = ((double)submarine_x - pw_AUV_x[x_index]); 
grid_r_difference = sgrt ((pow((double)submarine_y - pw_AUV_y[x_index], 2)) + 

(pow((double)submarine_z - pw_AUV_z[x_index], 2))); 

//Assuming each integer differnce equals one foot, this translates the difference 
//between sub and auv (x,y) into a coordinate in the grids reference. The 
//grid starts with (0,0) at the bow and (720, 0) at the stern. The center ofthe 

// is actually at grid position (360, 0) . 
if (grid_x_difference >= 0) { 

pw_flowfield_x[x_index] = 360 + (int)(2 * grid_x_difference); 

else { 
pw_flowfield_x[x_index] = 360 + (int)(2 * grid_x_di f ference) ; 

//Here 15 is subtracted to account for submarine radius (15 ft = 30 .5 ft 
segments) 

pw_flowfield_r[x_index] = (int)((grid_r_difference - 15.0) * 2.0); 

//Check to make sure pw_flowfield x and y are valid 
if ((pw_flowfield_x[x_index] >=  FLOWFIELDLENGTH - 1) || 

(pw_flowfield_x[x_index] <  0)) { 

if (TRACE) { 
//print error message 
cout « "**********************************************« << en(ji 

« "pw_flowfield_x[x_index] for AUV section " « x_index 
« " was calculated as "  « pw_flowfield_x[x_index] « endl; 

cout « "Submarine X = " « submarine_x « " ft  Submarine_y = " 
« submarine_y « " ft" «endl 
« "pw_AUV_x   = " « pw_AUV_x [x_index] « " ft  pw_AUV_y = " 
« pw_AUV_y[x_index] « " ft" 
<< endl; 

cout « "Value reset to 360" « endl; 
} 
//Reset the values to middle of grid 
Pw_flowfield_x[x_index] = 360; 

} 

if (pw_flowfield_r[x_index] >=  FLOWFIELDWIDTH - 1) { 

if (TRACE) { 
//print error message 
cout « "**********************************************B <K  en(jx 

« "pw_flowfield_r[x_index] for AUV section " « x_index 
« " was calculated as "  « pw_flowfield_r[x_index] « endl; 

cout « "Submarine X = " « submarine_x « » ft  Submarine_y = " 
« submarine_y « " ft" «endl 
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« "pw_AUV_x   = " « pw_AUV_x[x_index]  « 
« pw_AUV_y[x_index] « " ft" 
« endl; 

cout « "Value reset to 1 ft from hull" << endl; 

ft  pw_AUV_y 

} 

//This case is reached most when AUV hits hull Therefore to keep flow 
//force consistent I reset the flow field index to 1, or 6" from hull 
//Reset the value to next to hull 
pw_flowfield_r[x_index] = 60; 

} 
else if (pw_flowfield_r[x_index] <  0) { 

if (TRACE) { 
//print error message 
cout << »**********************************************" << endl 

« "pw_flowfield_r[x_index] for AUV section " « x_index 
<< " was calculated as "  « pw_flowfield_r[x_index] « endl; 

cout « "Submarine X = " « submarine_x « " ft  Submarine_y = " 
« submarine y « " ft" «endl 
« "pw_AUV_x   = " << pw_AUV_x[x_index]  << " ft  pw_AUV_y = 
« pw_AUV_y[x_index] « " ft" 
« endl; 

cout « "Value reset to 1 ft from hull" « endl; 
} 
//This case is reached when AUV hits hull Therefore to keep flow 
//force consistent I reset the flow field index to 1, or 6" from hull 
//Reset the value to next to hull 
pw_flowfield_r[x_index] = 1; 

3)) 

//Determine which flow grid to use based on pw_AUV_z and selected model 
if (((fabs(AUV_TTube_z_difference) <= torpedotube_height) && ( FLOW_FIELD_MODE == 

|| (FLOW_FIELD_MODE 2))  { 

offset 

* knots 

*/ 

//the direction should always be submarine_course + flow field direction 

//The flow magnitude here is converted to ft/sec by multiplying by 
I* 

ft/sec = knots * 2000 yds/hr* 3 ft/yd * hr/60 min * min/60 sec  = 1.667 

//Now decide which level of the tube flow fields to use 
if (AUV_TTube_z_difference > 3.0) { 

//The AUV is in the above tube zone 

//Next select the appropriate speed matrix 
switch ((int) submarine_speed) { 

case 1: 
flow_force_direction[x_index] = submarine_course + 

abovetubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(abovetubelevellktgrid[pw_flowfield_x[x_index]] 
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[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

abovetubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

abovetubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 2: 

flow_force_direction[x_index] = submarine_course + 

abovetubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(abovetubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

abovetubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

abovetubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 3: 

flow_force_direction[x_index] = submarine_course + 

abovetubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]]-direction; 
flow_force_magnitude[x_index].setValue 

(abovetubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

abovetubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

abovetubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

default: 
cerr <K   "The submarine is moving to fast for the AUV to dock with 

<< endl; 
break; 

} 

} 
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else if (AUV_TTube_z_difference > 1.0) { 
//Tue  AUV is at the upper tube edge zone 

//Next select the appropriate speed matrix 
switch ((int) submarine_speed) { 

case 1: 
flow_force_direction[x_index] = submarine_course + 

uppertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(uppertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

uppertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

uppertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 2: 

flow_force_direction[x_index] = submarine_course + 

uppertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(uppertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

uppertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

uppertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 3: 

flow_force_direction[x_index] = submarine_course + 

uppertubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(uppertubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

uppertubelevel3ktgrid[pw_flowfield_x[x_index]] 
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[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

uppertubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

« endl; 

default: 
cerr « "The submarine is moving to fast for the AUV to dock with. 

break; 

} 

else if (AUV_TTube_z_difference > -1.0) { 
//The AUV is in the center of the tube zone 

//Next select the appropriate speed matrix 
switch ((int) submarine_speed) { 

case 1: 
flow_force_direction[x_index] = submarine_course + 

centertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(centertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

centertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

centertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 2: 

flow_force_direction[x_index] = submarine_course + 

centertubelevel2ktgrid[pw_flowfield_x[x_index]] 

tpw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(centertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

centertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

centertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 
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break; 

case 3: 

flow_force_direction[x_index] = submarine_course + 

centertubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw__flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(centertubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

centertubelevel3ktgrid tpw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

centertubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

« endl; 

default: 
cerr « "The submarine is moving to fast for the AUV to dock with.' 

break; 

} • .       . 

else if (AUV_TTube_z_difference > -3.0) { 
//The AUV is in the lower tube edge zone 

//Next select the appropriate speed matrix 
switch ((int) submarine_speed) { 

case 1: 
flow_force_direction[x_index] = submarine_course + 

lowertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(lowertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

lowertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

lowertubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 2: 

flow_force_direction[x_index] = submarine_course + 
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lowertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(lowertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

lowertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

lowertubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 3: 

flow_force_direction[x_index] = submarine_course + 

lowertubelevel3ktgrid[pw_flowfield_x[x_index]]' 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(lowertubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

lowertubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

lowertubelevel3ktgrid tpw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

« endl; 

default: 
cerr « »The submarine is moving to fast for the AUV to dock with. 

break; 

} 

else { 
//The AUV is in the below tube zone 

//Next select the appropriate speed matrix 
switch ((int) submarine_speed) { 

case 1: 
flow_force_direction[x_index] = submarine_course + 

belowtubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 
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(belowtubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_f lowf ield__r[x_index]].x_magnitude * 1.667, 

belowtubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

belowtubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 2: 

flow_force_direction[x_index] = submarine_course + 

belowtubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(belowtubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

belowtubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

belowtubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 3: 

flow_force_direction[x_index] = submarine_course + 

belowtubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(belowtubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

belowtubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

belowtubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

default: 
cerr « "The submarine is moving to fast for the AUV to dock with.1 

« endl; 
break; 
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} 

} //End of If that decides tube level 

}   //End of if which decides flat/tube profile 

//This is the case of being in a flat plate field region 
else  { 

//Next select the appropriate speed matrix 
switch ((int) submarine_speed) { 

case 1: 
flow_force_direction[x_index] = submarine_course + 

nontubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(nontubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

nontubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

nontubelevellktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 2: 

flow_force_direction[x_index] = submarine_course + 

nontubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
flow_force_magnitude[x_index].setValue 

(nontubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].x_magnitude * 1.667, 

nontubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

nontubelevel2ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

case 3: 

flow_force_direction[x_index] = submarine_course + 

nontubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].direction; 
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flow_force_magnitude[x_index].setValue 

(nontubelevel3ktgrid[pw_flowfield_x[x_index]] 

tpw_flowfield_r[x_index]].x_magnitude * 1.667, 

nontubelevel3ktgrid tpw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].y_magnitude * 1.667, 

nontubelevel3ktgrid[pw_flowfield_x[x_index]] 

[pw_flowfield_r[x_index]].z_magnitude * 1.667) ; 

break; 

« endl; 

default: 
cerr « "The submarine is moving to fast for the AUV to dock with. 

break; 
} 

}  //end of else for  flat plate region 

}   //end of in flow field calculations 

//Check Bouyancy adjustment 
if     (pw_AUV_z[x_index] <= H / 2.0) // transition, calculate broach 

extent 
{ 

if   (pw_AUV_z[x_index] >= -(H / 2.0))      // broach region, reduce buoyancy 
{ 

pw_revisedBouyancy[x_index] = (Buoyancy/cross_sections) * (pw_AUV_z[x_index] 
+ H/2.0)/H; 

} 
else 
{ 

pw_revisedBouyancy[x_index] =0.0;     // completely out of the water 
} 

} 

else 
{ 

pw_revisedBouyancy[x_index] = (Buoyancy/cross_sections); II  >  H/2, no broach, 
normal submerged 

} 

//Global wave force effects in ft per second 
U_waves[x_index].setValue ( K_waves * 

(SeaState[SEASTATE].H_s * SeaState[SEASTATE].freql* ' 
(cos ( SeaState[SEASTATE].freql*AUV_time + 

SeaStatefSEASTATE].wavelength*pw_nose_length[x_index] ))) // + 
//SeaStatefSEASTATE].H_s * SeaState[SEASTATE].freg2* 
//    (cos ( SeaState[SEASTATE].freq2*AUV_time + 
// 

SeaState[SEASTATE].wavelength*pw_nose_length[x_index] )) + 
//SeaState[SEASTATE].H_s * SeaState[SEASTATE].freq3* 
//    (cos ( SeaState[SEASTATE].freq3*AUV_time + 
// 

SeaStatefSEASTATE].wavelength*pw_nose_length[x_index] ))) 
*(cos (heading_wave_l - AUV_psi)) 
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0.0, 

K_waves * 
(SeaState[SEASTATE].H_s * SeaState[SEASTATE].freql* 

(cos ( SeaState[SEASTATE].freql*AUV_time + 90.0 + 

SeaState[SEASTATE].wavelength*pw_nose_length[x_index] )))  // + 
//SeaState[SEASTATE].H_s * SeaState[SEASTATE].freq2* 
//     (cos ( SeaState[SEASTATE].freq2*AUV_time + 90.0 + 

SeaState[SEASTATE].wavelength*pw_nose_length[x_index] )) + 
//SeaState[SEASTATE].H_s * SeaState[SEASTATE].freq3* 
//     (cos ( SeaState[SEASTATE].freq3*AUV_time + 90.0 + 

SeaState[SEASTATE].wavelength*pw_nose_length[x_index]))) 
*(cos (heading_wave_l - AUV_psi)) 

); 

//At depth > 20 we reduce the wave motion effect linearly, deeper than 100' wave 
ettect is negligible 

if (AUV_z > 20.0) 
{ 

U_waves[x_index].setValue ( U_waves[x_index][1] * ((100.0-AUV_z)/100 0) 
0.0, 
U_waves[x_index][3] * ((100.0-AUV_z)/100.0) ); 

} else if (AUV_z > 100) { 

U_waves[x_index].setValue ( 0.0, 0.0, 0.0); 

} 

//Check  for revised_x_B adjustment 
if ((THETA ==0.0)    ||    (pw_AUV_z[x_index]   >=  H  /   2.0)) 

.*■    ■* Pw-revise<3_x_B[x_index]     =xx[x_index]   +   (pw_dx[x_index] /2.0) ;   //prevent 
divide-by-zero case  and too-deep case 

} 
else   if   (THETA >   0.0) 
{ 

pw_surface_length[x_index] = pw_AUV_z[x_index] / sinTHETA; 

} 
else if (THETA < 0.0) 
{ 

pw_surface_length[x_index] = pw_AUV_z[x_index] / (- sinTHETA); 

} 
else 
{ 

cout « "Unexpected case in revised CB calculation"" « endl- 

by zero ^™-revised-x-B [x-indexJ  = *x[x_index] + (pw_dx[x_index]/2.0); // prevent divide 

} 

(pw_Aw!z!™exj%=^^ <  Pw_nose_length[x_index]) && 

// move x_CB aft (fwd) but only if nose (stern) broaches the surface 

pw_revised_x_B[x_index]  = (xx[x_index] + (pw_dx[x_index]/2.0)) - 
(pw_nose_length[x_index] - pw_surface_length[x_index]) * sinTHETA / 2 0- 

//cout « "pw_revised_x_B in case one(nose out) = ■ « pw_revised_x B[x index]« 
endl 
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} 
else { 

pw_revised_x_B[x_index] =  (xx[x_index] + (pw_dx[x_index]/2.0)); 
//cout « "pw_revised_x_B in case 2= " << pw_revised_x_B[x_index]<< endl; 

} 

if (TRACE || TRACE_EOM) 
{ 

cout « "AUV_Z = " « AUV_z   « endl; 

cout « x_index « "  pw_dx = " << pw_dx[x_index] « endl; 

cout « "xx = " « xx[x_index] « endl; 

cout << "sinTHETA = " « sinTHETA « endl; 

cout « "pushup = " « pushup[x_index]<< endl; 

cout « "pw_AUV_z = " « pw_AUV_z[x_index]<< endl; 

cout « "pw_nose_length = " « pw_nose_length[x_index]« endl; 

cout « "pw_surface_length = " « pw_surface_length[x_index]<<-endl; 

cout « "pw_revisedBouyancy = " « pw_revisedBouyancy[x_index]« endl; 

cout « "pw_revised_x_B = " « pw_revised_x_B[x_index]<< endl; 
} 

} //end for loop 

//Loop to sum up piecewise bouyancy and x_b effects 
revisedBuoyancy =0.0; 
revised_x_B    = 0.0; 

for (int xl_index = 0; xl_index <= cross_sections - 1; xl_index++)  { 

revisedBuoyancy = revisedBuoyancy + pw_revisedBouyancy[xl_index]; 

revised_x_B = revised_x_B + ((xx[xl_index] + pw_dx[xl_index]/2.0) - 
(pw_revised_x_B[xl_index])); 

}  //end for loop 

revised_x_B = x_B - revised_x_B; 

if (TRACE || TRACE_EOM) 
{ 

cout « "revisedBuoyancy = " « revisedBuoyancy « ", "; 
cout « "Weight = " « Weight « ", " ; 
cout « endl; 
cout « " surface_length = "  « surface_length « ", "; 
cout « "nose_length = "    « nose_length    « ", "; 
cout « "revised_x_B = "    « revised_x_B    « endl; 

} 

in ii IIIIIII 111 in 11 in ii ii ii ii mi nun ii mi i mi in mi i in 111 ii i ii 111 ii i ii i 

II   integrate drag forces over the vehicle -------------_---// 
// corresponding to cross-body flow.  Use cross-sectional slices. - - - - -// 

//This section of code creates the rotation matrix which will be used later to 
//transform flow filed components from the sub's reference frame to the AUV's 
flow_rotation_matrix.set_identity(); 
flow_rotation_matrix.rotate  (submarine_roll - AUV_phi, 
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submarine_pitch - AUV_theta, 
submarine_course - AUV_psi); 

//This starts the summation of cross body drag forces. The following if statement 
//allows for 2 different modes of cross body calculations, one for a circular hull 
//and one for a square hull. The type of Hull is required to be defined in UUVmodel.H 

if (SQUARE_HULL == TRUE) { 

// traverse longitudinal centerline:  index through x coordinate arrays 
for (int x2_index = 0; x2_index <= cross_sections - 1; x2_index++)  { 

//Calculate the effects of sub flow field 
if (in_sub_flow_field ==1) { 

//here flow forces are due to flow field + wave motion 
flow_force_magnitude[x2_index] = flow_force_magnitude[x2 index] + 

U_waves[x2_index]; 

} 
else { 

//here flow forces are due to wave motion only 
flow_force_magnitude[x2_index] = U_waves[x2_index]; 

//This gets U, V, W from (x-dot, y-dot, z-dot)*rotation matrix transpose 
pw_UVW.setValue( flow_rotation_matrix * flow_force_magnitude[x2_index]); 

if (x2_index ==1) { 
temp_doppler_stw_u = pw_UVW[l]; 
temp_doppler_stw_v = pw_UVW[2]; 

} 

//  

// these integrals are for wave and flowinduced drag forces 

flow_field_sway_integral  +=  .rho2 * ( C_dy * hh [x2_index] 

* pw_UVW[2] * fabs(pw_UVW[2])) 

* pw_dx[x2_index]; 

flow_field_surge_integral = 0.0; 

flow_field_heave_integral +=  rho2 * ( C_dz * bb [x2_index] 

* pw_UVW[3] * fabs(pw_UVW[3])) 

* pw_dx[x2_index]; 

flow_field_roll_integral =  0.0; 

flow_field_pitch_integral +=  rho2 * ( C_dz * bb [x2_index] 

* pw_UVW[3] * fabs(pw_UVW[3])) 
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* xx [x2_index] * pw_dx[x2_index] ; 

flow_field_yaw_integral  +=  rho2 * ( C_dy * hh [x2_index] 

* pw_UVW[2] * fabs(pw_UVW[2])) 

* xx [x2_index] * pw_dx[x2_index]; 

//  
// these integrals are for rigidbody velocity drag forces 

sway_integral  +=  rho2 * ( C_dy * hh [x2_index] 

* square ((V + xx [x2_index] * R  )) ) 

* pw_dx[x2_index]; 

heave_integral +=  rho2 * ( C_dz * bb [x2_index] 

* square ((W - xx [x2_index] * Q))) 

* pw_dx[x2_index]; 

pitch_integral +=  rho2 * ( C_dz * bb [x2_index] 

* square ((W - xx [x2_index] * Q))) 

* xx [x2_index] * pw_dx[x2_index]; 

yaw_integral  +=  rho2 * ( C_dy * hh [x2_index] 

* square ((V + xx [x2_index] * R )) ) 

* xx [x2_index] * pw_dx[x2_index]; 

roll_integral  +=0.0; 

if (TRACE I I TRACE_EOM) 
{ 

cout « "dx = " « pw_dx[x2_index] « ", U_cf_x = " ■« U_cf_x 
« ", sway_integral  = " « sway_integral « endl; 

cout « "dx = " « pw_dx[x2_index] « ", U_cf_x = " « U_cf_x 
« ", heave_integral = " « heave_integral « endl; 

cout « "dx = " « pw_dx[x2_index] « ", U_cf_x = " « U_cf_x 
« ", pitch_integral = " « pitch_integral « endl; 

} 

cout « "dx = " « pw_dx[x2_index] « ", U_cf_x = " « U_cf_x 
« ", yaw_integral  = " « yaw_integral « endl; 

} //end for loop 

} //End of the square hull case 

//This starts the round hull case of cross body drag 
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else { 

// traverse longitudinal centerline:  index through x coordinate arrays 
for (int x2_index = 0; x2_index <= cross_sections - 1; x2_index++)  { 

U_cf_x = sqrt (  square (V + xx [x2_index] * R) 

+ square (W - xx [x2_index] * Q) ) ; 

if (U_cf_x > 1.0E-6) // arbitrary small non-0 minimum 
{ 

//Calculate the effects of sub flow field 
if (in_sub_flow_field ==1) { 

//here flow forces are due to flow field + wave motion 
flow_force_magnitude[x2_index] = flow_force_magnitude[x2_index] + 

U_waves[x2_index]; 

} 
else { 

//here flow forces are due to wave motion only 
flow_force_magnitude[x2_index] = U_waves[x2_index]; 

//This gets U, V, W from (x-dot, y-dot, z-dot)»rotation matrix transpose 
pw_UVW.setValue( flow_rotation_matrix * flow_force_magnitude[x2_index]); 

if (x2_index == 1) { 
temp_doppler_stw_u = pw_UVW[l]; 
temp_doppler_stw_v = pw_UVW[2]; 

} 

//  

// these integrals are for wave and flowinduced drag forces 

flow_field_sway_integral  +=  rho2 * ( C_dy * hh [x2_index] 

* pw_UVW[2] * fabs(pw_UVW[2])) 

* pw_dx[x2_index]; 

flow_field_surge_integral = 0.0; 

flow_field_heave_integral +=  rho2 * ( C_dz * bb [x2_index] 

* pw_UVW[3]    *   fabs(pw_UVW[3])) 

* pw_dx[x2_index]; 

flow_field_roll_integral =  0.0; 

flow_field_pitch_integral +=  rho2 * ( C_dz * bb [x2_index] 
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U_cf_x; 

U_cf_x; 

* pw_UVW[3] * fabs(pw_UVW[3])) 

* xx [x2_index] * pw_dx[x2_index]; 

flow_field_yaw_integral  +=  rho2 * ( C_dy * hh [x2_index] 

* pw_UVW[2] * fabs(pw_UVW[2])) 

* xx [x2_index] * pw_dx[x2_index]; 

//  

// these integrals are for rigidbody velocity drag forces 

sway_integral  +=  rho2 * ( C_dy * hh [x2_index] 

* square ((V + xx [x2_index] * R  )) ) 

* (V + xx [x2_index] * R) * pw_dx[x2_index] / 

heave_integral +=  rho2 * ( C_dz * bb [x2_index] 

* square ((W - xx [x2_index] * Q))) 

* (W - xx [x2_index] * Q) * pw_dx[x2_index] / 

pitch_integral +=  rho2 * ( C_dz * bb [x2_index] 

* square ((W - xx [x2_index] * Q))) 

* (W - xx [x2_index] * Q) 

* xx [x2_index] * pw_dx[x2_index] / U_cf_x; 

yaw_integral  +=  rho2 * ( C_dy * hh [x2_index] 

* square ((V + xx [x2_index] * R )) ) 

* (V + xx [x2_index] * R) 

* xx [x2_index] * pw_dx[x2_index] / U_cf_x; 

}   //end of if (U_cf_x > 1.0E-6) 

if (TRACE || TRACE_EOM) 
{ 

cout « "dx = " « pw_dx[x2_index] « ", U_cf_x = " « U_cf_x 
« ", sway_integral  = " « sway_integral « endl; 

cout « "dx = " « pw_dx[x2_index] « ", U_cf_x = " « U_cf_x 
« ", heave_integral = " « heave_integral « endl; 

cout « "dx = " « pw_dx[x2_index] « ", U_cf_x = " « U_cf_x 
« ", pitch_integral = " « pitch_integral « endl; 

cout « "dx = " « pw_dx[x2_index] « ", U_cf_x = " « U_cf_x 
« ", yaw_integral  = " « yaw_integral « endl; 
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} //end for loop 

}  //End of the round hull case of cross body drag 

//Add effects of flow field integral's to eom integrals 
sway_integral +=    flow_field_sway_integral; 
heave_integral +=    flow_field_heave_integral; 
pitch_integral +=    flow_field_pitch_integral; 
yaw_integral  +=    flow_field_yaw_integral; 
roll_integral +=    flow_field_roll_integral; 
surge_integral += flow_field_surge_integral; // unused 

//set doppler velocities for speed through water in ft/sec 
doppler_stw_u =  temp_doppler_stw_u; 
doppler_stw_v =  temp_doppler_stw_v; 

}  //end new bouyancy model 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

II  debug section,  selectively set sway/heave/pitch/yaw integrals to zero to 
// isolate problems,  also see zeroing of rhs values. 

// sway_integral = 0.0; 
// heave_integral = 0.0; 
// pitch_integral = 0.0; 
// yaw_integral = 0.0; 

IIII////IIIl/l/lIIIIIIIII III/////ll/llIIIIII/I/I///I//I///////////////////////// 

II  reduce efficiency if propellers operating astern -----------_// 
double port_propeller_efficiency, stbd_propeller_efficiency; 

if (AUV_port_rpm >= 0.0) port_propeller_efficiency =1.0; 
else port_propeller_efficiency = X_astern_efficiency; 

if (AUV_stbd_rpm >= 0.0) stbd_propeller_efficiency = 1.0; 
else stbd_propeller_efficiency = X_astern_eff iciency; 

11111111111111111111111111111111111111111111111111111111II111111111111111111111, 
II  calculate Equations of Motion right-hand sides // 
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

rhs [SURGE] = // Surge Motion Equation right hand side // 

m * ( (V * R) - (W * Q) + x_G * (Q2 + R2) - y_G * P*Q - z_G * P*R) 

+ rho2 * L4 * (  X_pp * P2  + X_qq * Q2 
+ X_rr * R2  + X_pr * P*R) 

+ rho2 * L3 * (  X_wq * W*Q + X_vp * V*P + X_vr * V*R 

+ U*Q * (  X_uq_delta_bow    * delta_planes_bow 
+ X_uq_delta_stern  * delta_planes_stern) 

+ U*R * (  X_ur_delta_rudder  * delta_rudder_bow 
+ X_ur_delta_rudder * delta_rudder_stern) 

+ rho2 * L2 * (  X_w * V2  + X_ww * W2 

+ U*V * (  X_uv_delta_rudder  * delta_rudder_stern) 

+ U*W * (  X_uw_delta_bow    * delta_planes_bow 
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+ X_uw_delta_stern  * delta_planes_stern) 

+ U * fabs (U)  * (  X_uu_delta_b_delta_b 
* delta_planes_bow 
* delta_planes_bow 

+ X_uu_delta_s_delta_s 
* delta_planes_stern 
* delta_planes_stern 

+ X_uu_delta_r_delta_r 
* delta_rudder_bow 
* delta_rudder_bow 

+ X_uu_delta_r_delta_r 
* delta_rudder_stern 
* delta_rudder_stern) 

) 

- (Weight - revisedBuoyancy) * sinTHETA 

// EPSILON terms have been removed due to revised equations of motion 

// + rho2 * L3 *  X_qdsn * U*Q * delta_planes_stern * EPSILON 
// + rho2 * L2 * EPSILON * ( X_wdsn * U*W * delta_planes_stern 
// 
II' + X_dsdsn * U2      * delta_planes_stern 
// * delta_planes_stern) 

// X_propulsion surge force (derived using expressions in Healey paper) 
// note that SPEED_PER_RPM is associated with work of two propellors 

+ rho2 * L2 * C_dO *  square (SPEED_PER_RPM) 

*  0.5 * (  AUV_port_rpm * fabs (AUV_port_rpm) 
* port_propeller_efficiency 

+ AUV_stbd_rpm * fabs (AUV_stbd_rpm) 
* stbd_propeller_efficiency) 

// X_resistance surge drag (derived using expressions in Healey paper) 

- rho2 * L2 * C_d0 * U * fabs (U); 

11111111111111111111111111111111II1111111111111111111111111111111111111111111111 

if (TRACE || TRACE_EOM || (rhs [SURGE] >= MAX_SURGE))   // Surge TRACE 
{ 
cout « "* surge terml=" « m * ((V * R) - (W * Q) 

+ x_G * (Q2 + R2) - y_G * P*Q - z_G * P*R)<< endl; 

cout « "term2=" «   + rho2 * L4 * (  X_pp * P2  + X_qq * Q2 
+ X_rr * R2  + X_pr * P*R) 

« endl; 

cout « " term3=" «   + rho2 * L3 * (  X_wq * W*Q + X_vp * V*P + X_vr * V*R 

+ U*Q * (  X_uq_delta_bow    * delta_planes_bow 
+ X_uq_delta_stern  * delta_planes_stern) 

+ U*R * ( X_ur_delta_rudder * delta_rudder_stern 
+ X_ur_delta_rudder * delta_rudder_bow) 

) 
« endl; 
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cout « "term4=" «   + rho2 * L2 * (  X_w * V2  + X_ww * W2 

+ U*V * (  X_uv_delta_rudder  * delta_rudder_stern) 

+ U*W * (  X_uw_delta_bow    * delta_planes_bow 
+ X_uw_delta_stern  * delta_planes_stern) 

+ U * fabs (U)  * (  X_uu_delta_b_delta_b 
* delta_planes_bow 
* delta_planes_bow 

+ X_uu_delta_s_delta_s 
* delta_planes_stem 
* delta_planes_stern 

+ X_uu_delta_r_delta_r 
* delta_rudder_bow 
* delta_rudder_bow 

+ X_uu_delta_r_delta_r 
* delta_rudder_stem 
* delta_rudder_stern) 

) 
« endl; 

cout « "term5=" « - (Weight - revisedBuoyancy) * sinTHETA 
« endl; 

cout « "term6,term7=" «   "EPSILON terms, no longer used" 
« endl; 

// cout « "term6=" « rho2 * L3 *  X_qdsn  * U*Q * delta_planes_stern 
//      * EPSILON « endl; 
// 
// cout « "term7=" «  rho2 * L2 * EPSILON * ( X_wdsn  * U*W 

' * delta_planes_stern 
11 + X_dsdsn * U2        * delta_planes_stern 
, . *  delta_planes_stern) 
//     « endl; 

cout « »term8=» «  + rho2 * L2 * C_dO *  square (SPEED_PER_RPM) 

*  0.5 * (  AUV_port_rpm * fabs (AUV_port_rpm) 
* port_propeller_efficiency 

+ AUV_stbd_rpm * fabs (AUV_stbd_rpm) 
* stbd_propeller_efficiency) 

« endl; 

cout « "term9=" « - rho2 * L2 * C_d0 * U * fabs (U) 
« endl; 

} 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIHI,, 

rhs [SWAY ] = // Sway Motion Equation right hand side // 

m * (- (u * R) + (W * P) - x_G * (P * Q) 

+ y_G * (P2 + R2) 

- z_G * (Q  * R) ) 

+ rho2 * L4 * (  Y_pq    * p*Q    + Y_qr   * Q*R) 
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+ rho2 * L3 * (  Y_up    * U*P    + Y_ur   * U*R 

+ Y_vq    * V*Q    + Y_wp   * W*P    +  Y_wr * W*R) 

+ rho2 * L2 * (  Y_uv    * U*V   + Y_vw   * V*W 

+ U*fabs(U) * Y_uu_delta_rb * delta_rudder_bow 

+ U*fabs(U) * Y_uu_delta_rs * delta_rudder_stern) 

- sway_integral 

+ (Weight - revisedBuoyancy) * cosTHETA * sinPHI 

(2.0 / (24.0 * 24.0))  // each thruster 2.0 lb per 24V signal squared 

* (  AUV_bow_lateral   * fabs (AUV_bow_lateral) 
+ AUV_stern_lateral * fabs (AUV_stern_lateral)); 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

if (TRACE || TRACE_EOM || (rhs [SWAY] >= MAX_SWAY))   // Sway TRACE 
{ 
cout « "* sway terml=" « m * (- (U * R) + (W * P) 

- x_G * (P * Q) 

+ Y_G * (P2 + R2) 

- z_G * (Q  * R) ) 
« endl; 

cout « "term2=" « 
« endl; 

cout « "term3=" « 

+ rho2 * L4 * (  Y_pq P*Q + Y_qr Q*R) 

« endl; 

cout « "term4=" « 

« endl; 

cout « "term5=" « 
« endl; 

cout « nterm6=" « 
« endl; 

cout « "term7=" « 

+ rho2 * L3 * (  Y_up    * U*P 

+ Y_vq    * V*Q    + Y_wp   * W*P 

+  Y_ur  * U*R 

+  Y_wr * W*R) 

+ rho2 * L2 * (  Y_uv    * U*V   + Y_vw   * V*W 

+ U*fabs(U) * Y_uu_delta_rb * delta_rudder_bow 

+ U*.fabs (U) * Y_uu_delta_rs * delta_rudder_stern) 

- sway_integral « " sway_integral" 

+ (Weight - revisedBuoyancy) * cosTHETA * sinPHI 

-  (2.0 / (24.0 * 24.0)) 
// each thruster 2.0 lb per 24V signal squared 

« endl; 

* (  AUV_bow_lateral   * fabs (AUV_bow_lateral) 
+ AUV_stern_lateral * fabs (AUV_stern_lateral)) 

} 

111II1111 III 1111 III III1111111IIIIIIIII11IIII11111 III III II11111II11111 III IIIIIIII 

rhs [HEAVE] = // Heave Motion Equation right hand side  // 
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m * (  (U * Q) - (V * P) - x_G * (P * R) - y_G * (Q * R) 

+ z_G * (P2 + Q2)) 

+ rho2 * L4 * (  Z_pp    * P2     + Z_pr * P*R   + Z_rr * R2) 

+ rho2 * L3 * (  Z_uq    * U*Q    + Z_vp * V*P   + Z_vr * V*R) 

+ rho2 * L2 * (  Z_uw    * U*W   + Z_w * V2 

+ ( U*fabs(U) * Z_uu_delta_b * delta_planes_bow ) 

+ ( U*fabs(U) * Z_uu_delta_s * delta_planes_stern)) 

- heave_integral 

+ (Weight - revisedBuoyancy) * cosTHETA * cosPHI 

// EPSILON terms have been removed due to revised equations of motion 

// + rho2 * L3 *    Z_qn  * U*Q * EPSILON 
// + rho2 * L2 * (  Z_wn * U*W 

// + Z_dsn * U*fabs(U) * delta_planes_stern) * EPSILON 

+  (2.0 / (24.0 * 24.0))  // each thruster 2.0 lb per 24V signal squared 

* ( AUV_bow_vertical   * fabs (AUV_bow_vertical)  + 
AUV_stern_vertical * fabs (AUV_stern_vertical)); 

if (TRACE || TRACE_EOM || (rhs [HEAVE] >= MAX.HEAVE))   //.Heave TRACE 

cout « "* heave terml=" «  m * (  (U * Q) - (V * P) - x_G * (P * R) 
- Y_G * (Q * R) 
+ z_G * (P2 + Q2)) 

<< endl ,- 

cout « "term2=" «  + rho2 * L4 * (  z_pp   * P2    + Z_pr   * P*R 
+ Z_rr * R2) « endl; 

cout « »term3=H «   + rho2 * L3 * (  Z_uq    * U*Q   + Z_vp * V*P 
+ Z_vr * V*R) « endl; 

cout « "term4=" «   + rho2 * L2 * (  Z_uw   * U*W   + Z_w  * V2 

+ ( U*fabs(U) * Z_uu_delta_b * delta_planes_bow  ) 

+ ( U*fabs(U) * Z_uu_delta_s * delta_planes stern)) 
« endl; —ii 

cout « "term5=" «  - heave_integral « " heave_integral" 
« endl; 

cout « "term6=" «  + (Weight - revisedBuoyancy) * cosTHETA * cosPHI 
« endl; 

cout « "term7, term8=" «   »no longer used" 
« endl; 

cout « "term9=" «  +  (2.0 / (24.0 * 24.0)) 
// each thruster 2.0 lb per 24V signal squared 

* ( AUV_bow_vertical   * fabs (AUV_bow_vertical)  + 
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AUV_stern_vertical   *   fabs   (AUV_stern_vertical)   ) 
«  endl; 

} 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

rhs [ROLL ] = // Roll Motion Equation right hand side // 

- (I_z - I_y) * Q*R - I_xy * P*R + I_yz * (Q2 - R2) + I_xz * P*Q 

- m * ( y_G * ( -U*Q + V*P) - z_G  * ( U*R - W*P) ) 

+ rho2 * L5  * (  K_pg * P*Q  + K_qr * Q*R 

+ K_pp * P * fabs(P) 
+ K_p  * P )  // hovering roll drag 

+ rho2 * L4  * ( K_up * fabs(U)*P  + K_ur * U*R + K_vq * V*Q 

+ K_wp * W*P  + K_wr * W*R) 

+ rho2 * L3  * (  K_uv * U*V  + K_vw * V*W 

- U*fabs(U) * 0.5 * (  K_uu_planes * delta_planes_bow 
+ K_uu_planes * delta_planes_stern) 

- U*fabs(U) * 0.5 * (  K_uu_rudder * delta_rudder_bow 
+ K_uu_rudder * delta_rudder_stern)) 

//Added roll integral for square hull model 
+ roll_integral 

// expected: opposed plane directions * cause negation & cancellation 

+ (Y_G * Weight - y_B * revisedBuoyancy) * cosTHETA * cosPHI 

- (z_G * Weight - z_B * revisedBuoyancy) * cosTHETA * sinPHI; 

// EPSILON terms have been removed due to revised equations of motion 
// + rho2 * L4 * K_pn * U*P * EPSILON 

// + rho2 * L3 * U*fabs(U)  * K_prop; // oversimplified, in error 

11 nil ii i ii 11 ii in i inn ii 111 in im in in um in nun inn mi i mi ii i ii i in i 

if (TRACE || TRACE_EOM || (rhs [ROLL] >= MAX_ROLL) )   // Roll TRACE 
{ 
cout « "* roll terml=" « - (I_z - I_y) * Q*R - I_xy * P*R + I_yz * (Q2 - R2) 

+ I_xz * P*Q 
« endl; 

cout « "term2=" « - m * ( y_G * ( -U*Q + V*P) - z_G  * ( U*R - W*P) ) 
« endl; 

cout « "term3=" « + rho2 * L5  * (  K_pq * P*Q  + K_qr * Q*R 

+ K_pp * p * fabs(P) 
+ K_p  * P )     II  hovering roll drag 

« endl; 

cout « "term4=" « + rho2 * L4  * ( K_up  * fabs (U) *P  + K_ur * U*R 

+ K_vq * V*Q + K_wp * W*P  + K_wr * W*R) 
« endl; 
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cout « "term5=" « + rho2 * L3  * (  K_uv * U*V  + K_vw * V*W 

- U*fabs(U) * 0.5 * (  K_uu_planes * delta_planes_bow 
+ K_uu_planes * delta_planes_stern) 

- U*fabs(U) * 0.5 * (  K_uu_rudder * delta_rudder_bow 
+ K_uu_rudder * delta_rudder_stern)) 

// expected: opposed plane directions A cause negation & cancellation 
« endl; 

cout « "term6=" « + (y_G * Weight - y_B * revisedBuoyancy) * cosTHETA * cosPHI 
« endl; 

cout « "term7=H « - (z_G * Weight - z_B * revisedBuoyancy) * cosTHETA * sinPHI 
« endl; 

cout « "term8,term9=" «   "EPSILON terms, no longer used" 
« endl; 

// cout « "term8=" « + rho2 * L4 * K_pn * U*P * EPSILON 
//     « endl; 

// cout « "term9=" « + rho2 * L3 * U*fabs(U)  * K_prop 
//    « endl; 
} 

IIIlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

rhs [PITCH] = // Pitch Motion Equation right hand side // 

" d-X - I_z) * P*R + I_xy * Q*R - I_yz * P*Q - I_xz * (P2 - R2) 

+  m * ( x_G * ( -U*Q + V*P) - z_G  * ( - V*R + W*Q)) 

+ rho2 * L5  * (  M_pp * P2   + M_pr * P*R  + M_rr * R*fabs (R) 

+ M_q  * Q 
+ M_qq * Q * fabs(Q))  // hovering pitch drag 

+ rho2 * L4  * ( M_uq * U*Q  + M_vp * V*P  + M_vr * V*R) 

+ rho2 * L3  * ( M_uw * U*W  + M_w * V2 

+ U*fabs(U) * ( M_uu_delta_bow  * delta_planes_bow 
+ M_uu_delta_stern * delta_planes_stern)) 

+ pitch_integral  // note sign corrections to Healey pitch_integral 

- (x_G * Weight  - revised_x_B * revisedBuoyancy) * cosTHETA * cosPHI 

~ <Z_G * Weight  -  z_B * revisedBuoyancy) * sinTHETA 

+  (2.0 / (24.0 * 24.0))  // each thruster 2.0 lb per 24V signal squared 
// multiplied by respective moment arms 
// x_bow_vertical (+), x_stern_vert (-) 

* ( (AUV_bow_vertical  * fabs (AUV_bow_vertical)   * x_bow_vertical) 
+(AUV_stern_vertical * fabs (AUV_stern_vertical) * x_stern_vertical)); 

// EPSILON terms have been removed due to revised equations of motion 
// + rho2 * L4  *  M_qn * U*Q * EPSILON 
// + rho2 * L3  * (M_wn * U*W + M_dsn * U*fabs(U) * delta_planes_stern) 
// * EPSILON; 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIII HI I//U/H 
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if (TRACE || TRACE_EOM || (rhs [PITCH] >= MAX_PITCH))   // Pitch TRACE 
{ 
cout « "* pitch terml=" « - (I_x - I_z) * P*R + I_xy * Q*R - I_yz * P*Q 

- I_xz * (P2 - R2) « endl; 

cout « "term2=" « +  m * ( x_G * ( -U*Q + V*P) - z_G  * ( - V*R + W*Q)) 
« endl; 

cout « "term3=" « + rho2 * L5  * (  M_pp * P2  + M_pr * P*R + M_rr 
* R*fabs (R) 

+ M_q  * Q 
+ M_qq * Q * fabs(Q))  // hovering pitch drag 

« endl; 

cout « "term4=" « + rho2 * L4  * ( M_uq * U*Q  + M_vp * V*P  + M_vr * V*R) 
« endl; 

cout « "term5=" « + rho2 * L3  * ( M_uw * U*W  + M_w * V2 

+ U*fabs(U) * (  M_uu_delta_bow  * delta_planes_bow 
+ M_uu_delta_stern * delta_planes_stern)) 

« endl; 

cout « "term6=" « + pitch_integral « " pitch_integral" 
« endl; 

cout « "term7=" « - (x_G * Weight  -  revised_x_B * revisedBuoyancy) 
* COSTHETA * COSPHI 

« endl; 

cout « "term8=" « - (z_G * Weight  -  z_B * revisedBuoyancy) * sinTHETA 
« endl; 

cout « "term9=" « +  (2.0 / (24.0 * 24.0)) 
// each thruster 2.0 lb per 24V signal squared 
// multiplied by respective moment arms 
// x_bow_vertical (+), x_stern_vert (-) 

* ( (AUV_bow_vertical   * fabs (AUV_bow_vertical)   * x_bow_vertical) 
+(AUV_stern_vertical * fabs (AUV_stern_vertical) * x_stern_vertical)) 

« endl; 

cout « "termlO,termll=" «   "EPSILON terms, no longer used" 
« endl; 

// cout « "terml0=" « + rho2 * L4  *  M_qn * U*Q * EPSILON 
/ /     « endl; 

// cout « "termll=" « + rho2 * L3  * (M_vm * U*W + M_dsn * U*fabs(U) 
// * delta_planes_stern) 
// * EPSILON 
//     « endl; 
} 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

rhs [YAW  ] = // Yaw  Motion Equation right hand side // 

- (I_y - I_x) * P*Q + I_xy * (P2 - Q2) + I_yz * P*R - I_xz * Q*R 

- m * ( x_G * ( U*R - W*P) - y_G   * ( - V*R + W*Q)) 

+ rho2 * L5  * (  N_pq * P*Q  + N_qr * Q*R 

+ N r  * R 
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+ N_rr * R * fabs (R))  // hovering yaw drag 

+ rho2 * L4  * ( N_up * U*P + N_ur * U*R  + N_vq * V*Q 

+ N_wp * W*P + N_wr * W*R) 

+ rho2 * L3  * ( N_uv * U*V + N_vw * V*W 

+ U*fabs(U) * N_uu_delta_rb * delta_rudder_bow 
- U*fabs(U) * N_uu_delta_rs * delta_rudder_stern) 

- yaw_integral 

+ (x_G * Weight  -  revised_x_B * revisedBuoyancy) * cosTHETA * sinPHI 

+ (y_G * Weight  - y_B * revisedBuoyancy) * sinTHETA 

- (2.0 / (24.0 * 24.0)) // each thruster 2.0 lb per 24V signal squared 
// multiplied by respective moment arms 

* ( (AUV_bow_lateral  * fabs (AUV_bow_lateral)   * x_bow_lateral  ) 
+(AUV_stern_lateral * fabs (AUV_stern_lateral) * x_stern_lateral )) 

- rho2 * L2 * C_d0 

* ( square (SPEED_PER_RPM) *  0.5 // propeller yaw 

* (  AUV_port_rpm * fabs(AUV_port_rpm) * y_port_propeller 
* port_propeller_efficiency 

+ AUV_stbd_rpm * fabs(AUV_stbd_rpm) * y_stbd_propeller 
* stbd_propeller_efficiency) 

// *** revision:  removed ( - U * fabs(U) ) term from dissertation, incorrect 
// - U * fabs(U)); 

) ; 

IIIIII illinium i iiiiiiiiiiiiiiin IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHI 

if (TRACE I I TRACE_EOM | | (rhs [YAW] >= MAX_YAW))   // Yaw TRACE 

cout « »* yaw terml=" «  - (i_y - i_x) * p*Q + i_Xy * (P2 - Q2) 
+ I_yz * P*R - l_xz * p*R 

« endl; 

cout « "term2=" «   -  m * ( x_G * ( U*R - W*P) - y_G   * ( - V*R + W*Q)) 
« endl; 

cout « "term3=" «   + rho2 * L5  * (  N_pq * P*Q  + N_qr * Q*R 

+ N_r  * R 
+ N_rr * R * fabs (R))  // hovering yaw drag 

« endl; 

cout « "term4=" «   + rho2 * L4  * ( N_up * U*P  + N_ur * U*R  + N_vq * V*Q 

+ N_wp * W*P  + N_wr * W*R) 
<< endl; 

cout « "term5=" « + rho2 * L3  * ( N_uv * U*V  + N_vw * V*W 

+ U*fabs(U) * N_uu_delta_rb * delta_rudder_bow 
- U*fabs(U) * N_uu_delta_rs * delta_rudder stern) 

« endl; 

cout « "term6=" «  - yaw_integral « " yaw_integral" 
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« endl; 

cout « "term7=" «  + (x_G * Weight  -  revised_x_B * revisedBuoyancy) 
* cosTHETA * sinPHI 

« endl; 

cout « "term8=" «  + (y_G * Weight 
« endl; 

cout « "term9 

y_B * revisedBuoyancy) * sinTHETA 

« -  (2.0 / (24.0 * 24.0)) 
// each thruster 2.0 lb per 24V signal squared 
// multiplied by respective moment arms 

* ( (AUV_bow_lateral   * fabs (AUV_bow_lateral)   * x_bow_lateral ) 
+(AUV_stern_lateral * fabs (AUV_stern_lateral) * x_stern_lateral )) 

« endl; 

cout « "terml0= 

// 
// 

revision: 

« - rho2 * L2 * C_d0 

* ( square (SPEED_PER_RPM) *  0.5 // propeller yaw 

* (  AUV_port_rpm * fabs(AUV_port_rpm) * y_port_propeller 
* port_propeller_efficiency 

+ AUV_stbd_rpm * fabs(AUV_stbd_rpm) * y_stbd_propeller 
* stbd_propeller_efficiency) 

removed ( - U * fabs(U) ) term from dissertation, incorrect 
- U * fabs (U) ) ; 

« endl; 

11111111111II1111111111111111111111111111111111111111111111111111111111111111111 

II debug section.  selectively set rhs values to zero to isolate problems. 
// also see zeroing of sway/heave/pitch/yaw integrals. 

// rhs•[SURGE] =0.0 
// rhs [SWAY ] =0.0 
// rhs [HEAVE] =0.0 
// rhs [ROLL ] =0.0 
// rhs [PITCH] =0.0 
// rhs [YAW  ] = 0.0 

MAX_ACCELERATIONS_EXCEEDED = 
((rhs [SURGE] >= MAX_SURGE) 
(rhs [HEAVE] >= MAX_HEAVE) 
(rhs [PITCH] >= MAX_PITCH) 

(rhs [SWAY ] >= MAX_SWAY ) 
(rhs [ROLL ] >= MAX_ROLL ) 
(rhs [YAW  ] >= MAX_YAW  )); 

if 
{ 

(TRACE) 

cout « tl SURGE = " « SURGE « endl ; 
cout « " SWAY = " « SWAY « endl ; 
cout « ir HEAVE = " « HEAVE « endl ; 
cout << " ROLL = " « ROLL « endl ; 
cout « H PITCH = " « PITCH « endl ; 

} 
if 
{ 

cout << It YAW = " « YAW « endl ; 

(TRACE 1 TRACE_EOM) 

cout « II SURGE = " « SURGE « endl ; 
cout « H SWAY = " « SWAY « endl ; 
cout « H HEAVE = " « HEAVE « endl ,- 
cout « n ROLL = " « ROLL « endl; 
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cout « 
cout « 

PITCH 
YAW 

cout « "rhs [SURGE] = 
cout « »rhs [SWAY ] = 
cout « »rhs [HEAVE] = 
cout « "rhs [ROLL ] = 
cout « "rhs [PITCH] = 
cout « "rhs [YAW  ] = 

« PITCH « endl 
« YAW « endl 

« rhs [SURGE] « endl 
« rhs [SWAY ] « endl 
« rhs [HEAVE] « endl 
« rhs [ROLL ] « endl 
« rhs [PITCH] « endl 
« rhs [YAW ] « endl 

print_matrix6x6 (mass_inverse); // cout « "mass_inverse:   " 
} 
if (TRACE || TRACE_EOM || MAX_ACCELERATIONS_EXCEEDED) 

cout « "velocities:     <" « U « ", " « V « 
« P « " ,  » « Q « » , 

cout« "RHS: »;   print_matrix6 (rhs); 

« W « " , " 
« R « ">» « endl; 

11111111111111111111111111111111111111111111111111111111111111111,11! 111,11! IN , 

II  calculate new accelerations matrix using mass_inverse & rhs, print  // 

multiply6x6_6 (mass_inverse, rhs, new_acceleration); 

if (TRACE || TRACE_EOM) 
{ 

cout « "Accelerations: 
} 

print_matrix6 (new_acceleration); 

// limit accelerations   

if (CLAMP)  // values are for NPS AUV, consider parameterizing 

clamp (& new_acceleration [SURGE], -MAX_SURGE, MAX_SURGE, 
"new_acceleration [SURGE]"); 

clamp (& new_acceleration [SWAY ], -MAX_SWAY , MAX_SWAY , 
"new_acceleration [SWAY ]"); 

clamp (& new_acceleration [HEAVE], -MAX_HEAVE, MAX_HEAVE, 
"new_acceleration [HEAVE]"); 

clamp (& new_acceleration [ROLL ], -MAX_ROLL , MAX_ROLL , 
"new_acceleration [ROLL ]") 

clamp (& new_acceleration [PITCH], 
"new_acceleration [PITCH]") 

clamp {& new_acceleration [YAW  ], 
"new_acceleration [YAW  ]") 

•MAX_PITCH, MAX_PITCH, 

-MAX_YAW  , MAX_YAW  , 

-// 

// find velocities by integrating averaged accelerations 
//      (Heun integration) 

new_velocity 
new_ve1oc i ty 
new_velocity 
new_velocity 
new_velocity 
new_velocity 

[SURGE] 
[SWAY ] 
[HEAVE] 
[ROLL ] 
[PITCH] 
[YAW  ] 

0.5 * (u_dot + new_acceleration [SURGE]) * dt + U 
0.5 * (v_dot + new_acceleration [SWAY ]) * dt + V 
0.5 * (w_dot + new_acceleration [HEAVE]) * dt + W 
°-5 * (p_dot + new_acceleration [ROLL ]) * dt + P 
0.5 * (q_dot + new_acceleration [PITCH]) * dt + Q 
°-5 * (r_dot + new_acceleration [YAW ]) * dt + R 

// find velocities by integrating instantaneous accelerations 
//      (Euler integration) 
//      (this method is less accurate and is not used, although at small 
''      timesteps the difference is negligible) 

-// 
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// new_velocity [SURGE] = (new_acceleration [SURGE]) * dt + U 
// new_velocity [SWAY ] = (new_acceleration [SWAY ]) * dt + V 
// new_velocity [HEAVE] = (new_acceleration [HEAVE]) * dt + W 
// new_velocity [ROLL ] = (new_acceleration [ROLL ]) * dt + P 
// new_velocity [PITCH] = (new_acceleration [PITCH]) * dt + Q 
// new_velocity [YAW  ] = (new_acceleration [YAW ]) * dt + R 

// Note that surge velocity may be negative under model constraints 
// but reverse stability is a problem.  Originally clamped non-negative. 

if (CLAMP) 
{ 
clamp (& new_velocity [SURGE], -MAX_SURGE, MAX_SURGE, 

"new_velocity [SURGE] velocity"); 
} 

// update UUVBody state accelerations to newly-calculated values   // 

u_dot = new_acceleration [SURGE] 
v_dot = new_acceleration [SWAY ] 
w_dot = new_acceleration [HEAVE] 
p_dot = new_acceleration [ROLL ] 
q_dot = new_acceleration [PITCH] 
r_dot = new_acceleration [YAW  ] 

// calculate world coordinate system linear & angular velocities   // 

//  see Cooke Figure 10 for corrections to Healey equations for x/y/z_dot: 
//  also Healey course notes eqn (26) and Frank-McGhee corrected paper (A.8) 

x_dot = AUV_oceancurrent_x 

+ U *  cos (PSI) * cos (THETA) 

+ V * (cos (PSI) * sin (THETA) * sin (PHI) - sin (PSI) * cos(PHI)) 

+ W * (cos (PSI) * sin (THETA) * cos (PHI) + sin (PSI) * sin(PHI)); 

y_dot = AUV_oceancurrent_y 

+ U *  sin (PSI) * cos (THETA) 

+ V * (sin (PSI) * sin (THETA) * sin (PHI) + cos (PSI) * cos(PHI)) 

+ W * (sin (PSI) * sin (THETA) * cos (PHI) - cos (PSI) * sin(PHI)); 

z_dot = AUV_oceancurrent_z 

- U * sin (THETA) 

+ V * cos (THETA) * sin (PHI) 

+ W * cos (THETA) * cos (PHI); 

phi_dot  = P + Q * sin (PHI) * tan (THETA) 

+ R * COS (PHI) * tan (THETA); 

theta_dot = Q * cos (PHI) 

- R * sin (PHI); 
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if  (cos (THETA) == 0.0) 
{ 

cout « "UUVBody::integrate_equations_of_motion ():  "       « endl; 
cout « »   cos (THETA) == 0.0 so psi_dot set equal to zero." « endl; 
psi_dot = 0.0; 

} 
else psi_dot = (Q * sin (PHI) + R * cos (PHI)) / cos (THETA); 

Vector3D linear_rates = Vector3D (x_dot, y_dot, z_dot); 
if (TRACE || TRACE_EOM) 
{ 

cout « endl; 
cout « "<x_dot, y_dot, z_dot>        = » « linear_rates « endl; 
cout « " magnitude = " « linear_rates.magnitude () 

« endl; 
} 

Vector3D euler_rates = Vector3D (phi_dot, theta_dot, psi_dot); 
if (TRACE || TRACE_EOM) 
{ 

cout « "<phi_dot, theta_dot, psi_dot> = " « euler_rates « endl; 
cout « " magnitude = " « euler_rates.magnitude () 

« endl; 
} 

// calculate world coordinate system homogenous transform matrix   // 

Hmatrix Hincremental = Hmatrix (); // default initialization 
Hincremental.set_orientation ( P * dt, Q * dt, R * dt ); 
Hincremental.rotate     ( PHI,    THETA,  PSI    );   ' 

double omega_x = Hincremental.phi_value (); 
double omega_y = Hincremental.theta_value (); 
double omega_z = Hincremental.psi_value   (); 

Vector3D world_rates = Vector3D (omega_x, omega_y, omega z); 
if (TRACE || TRACE_EOM) 
{  ■ 

cout « "<omega_x, omega_y, omega_z> = " « world_rates « endl; 
cout « " magnitude = " « world_rates.magnitude () 

« endl; 
} 

Hmatrix Hrevisedl = Hmatrix ();   // default initialization 
Hrevisedl.incremental_rotation    ( phi_dot, theta_dot, psi_dot, dt )• 
Hrevisedl.incremental_translation ( U, V, W, dt ); 

Hmatrix Hproductl = Hprevious * Hrevisedl; 
Hproductl.incremental_translation (AUV_oceancurrent_x, 

AUV_oceancurrent_y, 
AUV_oceancurrent_z, dt); 

Hprevious = Hproductl; 

// translate and rotate and update time in RigidBody state  // 
// note world coordinate system is used by RigidBody: 

set_angular_velocities (phi_dot, theta_dot, psi_dot); 

set_linear_velocities ( x_dot,    y_dot,   z_dot); 

set_time_of_posture (current_uuv_time); 

update_Hmatrix (dt); 
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if (TRACE) 
{ 

cout « "incremental hmatrix = 
Hincremental.print_hmatrix (); 
cout « "revisedl hmatrix = " ; 
Hrevisedl.print_hmatrix (); 
cout << "productl hmatrix = " ; 
Hproductl.print_hmatrix () ; 

} 

cout << "original hmatrix 
hmatrix. print_hmatrix () ; 

if (TRACE)  cout « "substituting productl hmatrix" 
hmatrix = Hproductl; 

« endl; 

// 

// Save body-coordinate-system velocities for the next loop: 

U = new_velocity [SURGE] 
V = new_velocity [SWAY ] 
W = new_velocity [HEAVE] 
P = new_velocity [ROLL ] 
Q = new_velocity [PITCH] 
R = new_velocity [YAW  ] 

// cout « "world U = " « U « " , x_dot    = " « x dot « endl ; 
// cout << "world V = " « V « " , y_dot    = " « y_dot << endl ; 
// cout « "world W = " « W « " , z_dot    = " « z dot « endl ; 
// cout « "world P = " « P « " , phi_dot  = " << phi_dot « endl ; 
// cout « "world Q = " « Q « " , theta_dot = " « theta dot « endl ; 
// cout « "world R = " « R « " , psi_dot  = " « psi_dot « endl; 

//   

// update all hydrodynamics-model-provided state variables in AUV_globals.h 
//       prior to retransmittal to AUV via AUVsocket 

AUV_time = current_uuv_time; // mission time 

AUV_x 
AUV_y 
AUV_z 
AUV_phi 
AUV_theta 
AUV_psi 

x_value 0 // X 
y_value 0 // y 
z_value 0 // z 
phi_value 0 // roll 
theta_value 0 // pitc 
psi_value 0 // yaw 

position in world coordinates 
position in world coordinates 
position in world coordinates 
posture in world coordinates 

pitch posture in world coordinates 
posture in world coordinates 

AUV_speed=new_velocity [SURGE]; // paddlewheel speed = u = surge 

AUV_u = new_velocity [SURGE]; // 
AUV_v = new_velocity [SWAY ]; // 
AUV_w = new_velocity [HEAVE]; // 
AUV_p = new_velocity [ROLL ]; // 
AUV_q = new_velocity [PITCH]; // 
AUV_r = new_velocity [YAW  ]; // 

AUV_u_dot 
AUV_v_dot 
AUV_w_dot 
AUV_p_dot 
AUV_q_dot 
AUV r dot 

u_dot 
v_dot 
w_dot 
p_dot 
q_dot 
r_dot 

// 
// 
// 
// 
// 
// 

surge linear 
sway linear 
heave linear 
roll angular 
pitch angular 
yaw  angular 

velocity 
velocity 
velocity 
velocity 
velocity 
velocity 

along 
along 
along 
about 
about 
about 

x-axis 
y-axis 
x-axis 
x-axis 
y-axis 
z-axis 

linear 
linear 
linear 

angular 
angular 
angular 

acceleration 
acceleration 
acceleration 
acceleration 
acceleration 
acceleration 

along x-axis 
along y-axis 
along x-axis 
about x-axis 
about y-axis 
about z-axis 

AUV x dot x_dot; // Euler velocity along North-axis 
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AUV_y_dot     = y_dot; // 
AUV_z_dot     = z_dot; // 
AUV_phi_dot  = phi dot; // 
AUV_theta_dot = theta dot; // 
AUV_psi_dot   = psi_dot; // 

Euler velocity along East-axis 
Euler velocity along Depth-axis 

Euler rotation rate about North-axis 
Euler rotation rate about East-axis 
Euler rotation rate about Depth-axis 

divetracker_rangel = sgrt (sqr (AUV_x 
sqr (AUV_y 
sqr (AUV_z 

divetracker_range2 sqrt (sqr (AUV_x 
sqr (AUV_y 
sqr (AUV_z 

DiveTrackerl_x) + 
DiveTrackerl_y) + 
DiveTrackerl_z)); 

DiveTracker2_x) + 
DiveTracker2__y) + 
DiveTracker2_z)); 

//  

//set value of doppler sonar outputs 
//  

//doppler speed over ground in meters/sec 
doppler_sog_u = U * 0.3048; 
doppler_sog_v = V * 0.3048; 

//doppler speed through water in meters/sec 
doppler_stw_u = doppler_stw_u *  0.3048; 
doppler_stw_v = doppler_stw_v *  0.3048; 

//doppler altitude returns height of AUV above bottom in meters, I assume total depth of 
100 meters 
doppler_altitude = 100.0 - AUV_z; 

if (FALSE && TRACE_EOM && MAX_ACCELERATIONS EXCEEDED) 
{ 

char user_pause; 
cout « "==== Hit enter to continue... ====»,- 
ein » user_pause; 
cout « endl; 

} 

return; // integrate_equations_of_motion () complete 
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APPENDIX B. VIRTUAL ENVIRONMENT JAVA/VRML CODE 

1.      Java Source Code 

This appendix includes the files needed for the Phoenix AUV dynamics to run in Java with the 

virtual environment done in VRML. Since the functionality of the C++ and Java version are the same 

the actual source code is not included. The source code is freely distributed at 

http://www.stl.nps.navv.mil/~auv. Please feel free to download a complete version of the code if it is 

required. The complete list of Java files needed to run the virtual environment follows: 

dynamics.java UUVBody.java 

AUVglobals.java UUVmodel.java 

SonarModel.java AUVsocket.java 

AUVmodel.java Flo wFileReader.java 

RigidBody.java DISNetworkedRigidBody.java 

Hmatrix.java Vector3D.java 

MathU.java Console.java 

Additionally, the DIS-Java-VRML library is required to compile the program. This can be 

obtained free of charge at http://www.stl.nps.navy.mil/dis-java-vrml. 
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2.      AUVvirtuaI.wri 
#VKML V2.0 utf8 

#This file creates a Virtual world for the Phoenix AUV 
#Author:  Kevin Byrne 
#Date :   28 January 1998 

#This is the externproto to link in DIS pdu's 

EXTERNPROTO EspduReadTransformTrace [ 

fie}d SFString    marking # 0..11 character label for 
entity 

lie}^ SFTime readlnterval # seconds between DIS updates 
tle}d SFString    address # multicast address or 
"umcast" 
field SFInt32 port ' # port number 

exposedField MFNode children 
field SFVec3f translation 
field SFRotation   rotation 
exposedField SFVec3f scale 
exposedField SFRotation   scaleOrientation 
field SFVec3f bboxCenter 
field SFVec3f bboxSize 
exposedField SFVec3f center 
eventin MFNode addChildren 
eventIn MFNode removeChildren 

] [ "EspduReadTransform.wri" 
"../JavaViaScriptNode/EspduReadTransform.wrl" # local or remote URLs for the 

^http^/www.stl.nps.navy.mil/dis-java-vrml/mil/navy/nps/JavaViaScriptNode/EspduReadTransfo 

] 

EspduReadTransformTrace { 

marking      "Phoenix AUV" 

readlnterval 2 # seconds between DIS reads 

# do not modify address/port while using unicast-only browser, run bridge instead 
"" "224.2.244.141"     # NPS AUV exercise default, 

3111        # NPS AUV exercise default 

"phoenix_auv.wr1" 
"http://web.nps.navy.mil/-kmbyrne/AUVvw/phoenix_auv.wr1" 

# offset for initial location/orientation, 

# 
multicast 

address 

# port 

children Inline { 
url   [ 

] 
} 

translation 2-2 0 

#End of Proto 
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Group { 
children [ 

#This Section states Navigation info 
Navigationinfo  { 

type   "EXAMINE"       #In the end should be FLY 
speed 10.0 
avatarSize    [0.26, 1.6, 0.75] 

}, 
#This section adds a background to the scene 
Background { 
skyColor [ 

0.0 0.2 0 7, 
0.0 0.5 1 0, 
0.4 0.8 1 0 ] 

skyAngle [1.309, 1 571] 
}, 

#This Section creates the Ocean Floor 
Transform  { 
translation -75.0 -30.0 -75.0 
children Shape { 

appearance Appearance { 
material Material { 

ambientlntensity 0. 
diffuseColor 0.3 0. 
specularColor 0.75 
shininess 0.10 

} 
} 

50 
11 0.00 
0.33 0.00 

geometry ElevationGrid { 
xDimension 15 
zDimension 15 
xSpacing 10 
zSpacing 10 
solid     FALSE 

creas eAngle 0 .785 
height [0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 

0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 

}, 

#This section adds the sea surface 
#It uses an indexed face set 
Shape { 
appearance Appearance { 

material Material { 
ambientlntensity 70 
diffuseColor 0.0 0.0 1.0 
specularColor 0.0 0.0 1.00 
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shininess 0.10 
transparency 0.3 

} 
} 
geometry IndexedFaceSet { 

coord  Coordinate { 
point [ -75  0  75, 

-75  0 -75, 
75  0 -75, 
75  0  75,] 

} 
coordlndex [  0, 1, 2, 3, ] 
solid FALSE 

}, 

#This section adds the Sun 
DirectionalLight { 
direction 0.0 -1.0 0.0 
}, 

#This Section places a 688 Class Submarine in the scene 
Transform { 

translation 0.0 -5.0 40.0 
rotation   0.0 1.0 0.0 3.142 

#This sub must be scaled down from 600 M to -100 M 
scale 0.1666 0.1666 0.1666 
children [ 

Inline { 
bboxSize 500.0 300.0 300.0 
url "688.wri" 

} 
] 

}, 

#This transform places the oil rig in the scene 
Transform { 

translation -45.0 7.0 -10.0 
children [ 

Inline  { 
bboxSize 200.0 200.0 200.0 
url "oil_rig.wri" 

} 
] 

}, 

#This places a tube on the sea floor 
Transform { 

translation 0.0 -30.0 0.0 
rotation   1.0 0.0 0.0 1.571 
children  [ 

Shape { 
appearance Appearance { 

material Material { 
diffuseColor 0.8 1.0 0.0 

} 
} 

geometry Cylinder { 
height 6.0 
top   FALSE 
bottom FALSE 

} 
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] 

>, 
] 

} 
#end of  file AUVvirtual.wri 
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3.      Oil_rig.wri 
#VRML V2.0 utf8 

#This file creates an oil rig for the Phoenix AUV VW 
#Author:  Kevin Byrne 
#Date :   28 January 1998 

Navigationinfo { 
type [ "EXAMINE" "ALL" ] 

} 

Viewpoint { 
position 17 35 0 
orientation 0 10 0 
description "On Oil Rig" 

} 

Group { 
children [ 

#This creates the left  forward leg 
Transform { 

translation 0.0 -10.0 0.0 
children  [ 

Shape { 
appearance Appearance { 

material DEF blueMetal Material { 
diffuseColor 0.4 0.4 1.0 

} 
} 

geometry DEF Leg Cylinder { 
radius 3 .0 
height 55.0 

} 

}, 

#Back Left Leg 
Transform { 

translation  0.0 -10.0 -35.0 
children  [ 

Shape { 
appearance Appearance { 

material USE blueMetal 
} 

geometry USE Leg 
} 

] 
}, 

#Back Right Leg 
Transform { 

translation  35.0 -10.0 -35.0 
children  [ 

Shape { 
appearance Appearance { 

material USE blueMetal 
} 
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geometry USE Leg 
} 

}, 

#Front Right Leg 
Transform { 

translation 35.0 -10.0 0.0 
children  [ 

Shape { 
appearance Appearance { 

material USE blueMetal 
} 

geometry USE Leg 

}, 

#This creates the left  forward crossbeam 
Transform { 

translation  17.5 10.0 0.0 
rotation    0.0 0.0 1.0 1.2 
children  [ 

Shape { 
appearance Appearance { 

material DEF white Material { 
diffuseColor 1.0 1.0 1.0 

} 
} 

geometry DEF CrossLeg Cylinder { 
radius 0 . 8 
height 38.0 

} 

}, 

#Left forward cross beam 2 
Transform { 

translation 17.5 10.0 0.0 
rotation    0.0 0.0 1.0  -1.2 

children  [ 
Shape { 

appearance Appearance { 
material USE white 

} 

geometry USE CrossLeg 

}, 

#Left forward cross beam 3 
Transform { 

translation  0.0 10.0 -17.5 
rotation    1.0 0.0 0.0  1.2 

children  [ 
Shape { 

appearance Appearance { 
material USE white 

} 
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geometry USE CrossLeg 
} 

#Left forward cross beam 4 
Transform { 

translation  0.0 10.0 -17.5 
rotation    1.0 0.0 0.0  -1.2 

children  [ 
Shape { 

appearance Appearance { 
material USE white 

} 

geometry USE CrossLeg 
} 

#Left forward cross beam 5 
Transform { 

translation 35.0 10.0 -17.5 
rotation    1.0 0.0 0.0  1.2 

children  [ 
'Shape { 

appearance Appearance { 
material USE white 

} 

geometry USE CrossLeg 
} 

] 
}, 

#Left forward cross beam 6 
Transform { 

translation 35.0 10.0 -17.5 
rotation    1.0 0.0 0.0  -1.2 

children  [ 
Shape { 

appearance Appearance { 
material USE white 

} 

geometry USE CrossLeg 
} 

] 
}, 

#Left forward cross beam 7 
Transform { 

translation 17.5 10.0 -35.0 
rotation    0.0 0.0 1.0  1.2 

children  [ 
Shape { 

appearance Appearance { 
material USE white 

} 

geometry USE CrossLeg 
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} 
] 

}, 
#Left forward cross beam 8 
Transform { 

translation 17.5 10.0 -35.0 
rotation    0.0 0.0 1.0  -1.2 

children  [ 
Shape { 

appearance Appearance { 
material USE white 

} 

geometry USE CrossLeg 

}, 

#This creates the bottom platform 
Transform { 

translation 17.5 17.5 -17.5 
children  [ 

Shape { 
appearance Appearance { 

material Material { 
diffuseColor 1.0 0.2 0.2 

} 
} 

geometry Box { 
size 50.0 2.0 50.0 

} 

}, 

#This places a simple box-like building on the oil rig 
Transform { 

translation  27.5 22.5 -17.5 
children  [ 

Shape { 
appearance Appearance { 

material Material { 
diffuseColor 1.0 1.0 0.0 

} 
} 

geometry Box { 
size 15.0 8.0 10.0 

} 

} 

#This places a second simple box-like building on the oil rig 
Transform { 

translation 5.0 21.5 -17.5 
children  [ 

Shape { 
appearance Appearance { 

material Material { 
diffuseColor 0.4 1.0 0.4 

} 
} 
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geometry Box { 
size 10.0 6.0 10.0 

} 
} 

] 
} 

]   # end of oilRig group children 

}  # end of oilRig group 

#end of file oil_rig.wri 
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4.      688.wri 
#VRML V2.0 Utf8 
#This file creates a submarine 
#Author:  Kevin Byrne 
#Date :   2 Dec 1997 

#This Section builds a 688 Class Submarine 
Transform { 

children [ 
#The Submarine Hull 
Group { 

children     [ 
Navigationinfo { 

avatarSize 
}, 
Viewpoint { 

position 
orientation 
fieldOfView 
description 

>, 
Viewpoint { 

position 
orientation 
fieldOfView 
description 

}, 
Viewpoint { 

position 
orientation 
fieldOfView 
description 

}, 
Viewpoint { 

position 
orientation 
fieldOfView 
description 

>, 

Viewpoint { 
position 
orientation 
fieldOfView 
description 

}, 
Viewpoint { 

position 
orientation 
fieldOfView 
description 

}, 
Viewpoint { 

position 
orientation 
fieldOfView 
description 

}, 
Viewpoint { 

position 
orientation 
fieldOfView 

[ 0.3, 1.6, 0.75 ] 

-600 0 0 
0 1.0 0 -1.571 
0.8 
"Upper Foward End of 688, looking Aft" 

-40 20 -110 
0 1.0 0 3.14 
0.95993 
"Upper STBD Side of 688, looking to Port" 

350 50 10 
0 1.0 0 1.571 
0.8 
"Upper Aft End of 688, looking Fwd" 

-40 20 120 
0 0 0 0 
0.95993 
"Upper Port Side of 688, looking to STBD" 

-350 -60 10 
0 1.0 0 -1.571 
0.8 
"Lower Foward End of 688, looking Aft" 

-80 -20 -110 
0 1.0 0 3.14 
0.95993 
"Lower STBD Side of 688, looking to Port" 

350 -50 10 
0 1.0 0 1.571 
0.8 
"Lower Aft End of 688, looking Fwd" 

-80 -20 
0 0 0 0 
0.95993 

120 
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description  "Lower Port Side of 688, looking to STBD" 

Transform { 
rotation    0.577417 -0.577317 -0.577317  4.18889 

center      0 2.5 10 
children 

Shape { 
appearance        Appearance { 
material DEF _688_Hull Material { 
ambientIntens i ty      0.1 
diffuseColor   0.1 0.1 0.1 
specularColor  0.10.10.1 

} 

geometry  IndexedFaceSet { 
coord Coordinate { 

point    [    1.73 -160 5.33, 
0 -162.5 4.92, 0 -160 5.6, 
0.25 -165 4.23, 0.25 -167.5 3.55, 
0.46 -175 1.43, 0 -172.5 2.18, 
0 -175 1.5, 5.6 -160 0, 
4.95 -162.5 0, 5.33 -160 1.73, 
4.23 -165 0.25, 3.55 -167.5 0.25, 
1.43 -175 0.46, 2.18 -172.5 0, 
1.5 -175 0, 18 -172.5 10, 
17.8 -170 10, 18.2 -170 10, 
18.2 -167.5 10, 17.8 -167.5 10, 
18 -166 10, 0 -172.5 15, 
0 -166 15, 0.2 -170 15, 
17.8 -170 0.2, 17.8 -167.5 0.2, 
18 -166 0, 18.2 -170 0, 
18 -172.5 0, 0.2 -167.5 15, 
4.53 -160 3.29, 0.88 -175 1.21,' 
3.29 -160 4.53, -3.29 -160 4.53, 
-0.46 -175 1.43, -0.88 -175 1.21, 
-4.53 -160 3.29, -1.21 -175 0.88, 
-5.33 -160 1.73, -1.43 -175 0.46, 
-0.25 -165 4.23, -0.2 -167.5 15, 
-0.25 -167.5 3.55, -0.2 -170 15, 
-4.23 -165 0.25, -17.8 -167.5 0.2, 
-4.95 -162.5 0, -3.55 -167.5 0.25, 
-2.18 -172.5 0, -18 -172.5 0, 
-18.2 -170 10, -18.2 -170 0, 
-18.2 -167.5 10, -18.2 -167.5 0, 
-18 -166 10, -18 -166 0, 
-17.8 -167.5 10, -17.8 -170 10, 
-17.8 -170 0.2, -18 -172.5 10, 
-1.5 -175 0, -5.6 -160 0, 
-1.73 -160 5.33, -1.73 -160 -5.33, 
0 -162.5 -4.92, 0 -160 -5.6, 
-0.25 -165 -4.23, -0.25 -167.5 -3.55, 
-0.46 -175 -1.43, 0 -172.5 -2.18, 
0 -175 -1.5, -5.33 -160 -1.73, 
-4.23 -165 -0.25, -3.55 -167.5 -0.25, 
-1.43 -175 -0.46, -18 -172.5 -10, 
-17.8 -170 -10, -18.2 -170 -10, 
-18.2 -167.5 -10, -17.8 -167.5 -10, 
-18 -166 -10, 0 -172.5 -15, 
0 -166 -15, -0.2 -170 -15, 
-17.8 -170 -0.2, -17.8 -167.5 -0.2, 
-0.2 -167.5 -15, -4.53 -160 -3.29, 
-0.88 -175 -1.21, -3.29 -160 -4.53, 
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3.29 -160 -4.53, 
0.88 -175 -1.21, 
1.21 -175 -0.88, 
1.43 -175 -0.46, 
0.2 -167.5 -15, 
0.2 -170 -15, 
17.8 -167.5 -0.2, 
18.2 -170 -10, 
18.2 -167.5 0, 
17.8 -167.5 -10, 
17.8 -170 -0.2, 
1.73 -160 -5.33, 
1.6 179.6 0, 
1.29 179.6 0.94, 
0.5 179.6 1.52, 
3.42 178 1.1, 
2.11 178 2.91, 
3.6 178 0, 
5.33 176 1.73, 
1.73 176 5.33, 
0 178 3.6, 
6.71 172 4.88, 
4.88 172 6.71, 
11.2 164 0, 
9.06 164 6.58, 
2.56 172 7.9, 
14 152 0, 
13.31 152 4.33, 
4.33 152 13.31, 
0 152 14, 
12.14 140 8.82, 
8.82 140 12.14, 
15 140 0, 
12.7 128 9.23, 
4.85 128 14.93, 
15.7 128 0, 
12.82 116 9.32, 
4.89 116 15.07, 
15.85 116 0, 
12.94 100 9.4, 
0 100 16, 
15.22 90 4.94, 
12.94 90 9.4, 
4.94 90 15.22, 
0 90 16, 
15.22 30 4.94, 
12.94 30 9.4, 
9.4 30 12.94, 
4.94 30 15.22, 
0 30 16, 
16 30 0, 
12.94 0 9.4, 
4.94 0 15.22, 
16 0 0, 
12.94 -30 9.4, 
4.94 -30 15.22, 
16 -30 0, 
12.94 -60 9.4, 
4.94 -60 15.22, 
16 -60 0, 
12.94 -80 9.4, 
4.94 -80 15.22, 
16 -80 0, 
14.93 -90 4.85, 
4.85 -90 14.93, 

0.46 -175 -1.43, 
4.53 -160 -3.29, 
5.33 -160 -1.73, 
0.25 -165 -4.23, 
0.25 -167.5 -3.55, 

4.23 -165 -0.25, 
3.55 -167.5 -0.25, 
18.2 -167.5 -10, 
18 -166 -10, 
17.8 -170 -10, 
18 -172.5 -10, 
0 180 0, 

1.52 179.6 0.5, 
0.94 179.6 1.29, 
0 179.6 1.6, 

2.91 178 2.11, 
1.1 178 3.42, 
5.6 176 0, 
3.29 176 4.53, 
0 176 5.6, 
8.3 172 0, 
4.53 176 3.29, 
0 172 8.3, 

7.9 172 2.56, 
6.58 164 9.06, 

0 164 11.2, 
10.65 164 3.46, 
8.23 152 il.33, 
3.46 164 10.65, 
14.27 140 4.64, 
11.33 152 8.23, 
4.64 140 14.27, 
14.93 128 4.85, 
9.23 128 12.7, 
0 140 15, 

15.07 116 4.89, 
9.32 116 12.82, 
0 128 15.7, 

16 100 0, 
9.4 100 12.94, 
0 116 15.85, 
15.22 100 4.94, 

9.4 90 12.94, 
4.94 100 15.22, 
16 60 0, 
15.22 60 4.94, 

12.94 60 9.4, 
9.4 60 12.94, 

4.94 60 15.22, 
0 60 16, 
15.22 0 4.94, 
9.4 0 12.94, 
0 0 16, 
15.22   -30   4.94, 
9.4   -30   12.94, 
0   -30   16, 
15.22   -60   4.94, 
9.4   -60   12.94, 
0   -60   16, 
15.22   -80   4.94, 
9.4   -80   12.94, 
0   -80   16, 
15.7   -90   0, 
9.23   -90   12.7, 
0   -90   15.7, 
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15 -110 0, 
12.7 -90 9.23, 
4.64 -110 14.27, 
14 -120 0, 
12.14 -110 8.82, 
4.33 -120 13.31, 
10.65 -139 3.46, 
11.33 -120 8.23, 
3.46 -139 10.65, 
7.9 -150 2.56, 
2.56 -150 7.9, 
8.3 -150   0, 
0   -150   8.3, 
0   -150   -8.3, 
6.71   -150   -4.88, 
3.46   -139   -10.65, 
6.58   -139   -9.06, 
10.65   -139   -3.46, 
0   -120   -14, 
11.33   -120   -8.23, 
4.64   -110   -14.27, 
12.14   -110   -8.82, 
4.85   -90   -14.93, 
9.23   -90   -12.7, 
14.93 -90   -4.85, 
0   -90   -15.7, 
12.94 -80   -9.4, 
4.94   -60   -15.22, 
9.4 -60   -12.94, 
15.22   -60   -4.94, 
0   -60   -16, 
12.94   -30   -9.4, 
4.94   0   -15.22, 
9.4   0   -12.94, 
15.22   0   -4.94, 
0 0 -16, 
12.94 30 -9.4, 
4.94 60 -15.22, 
9.4 60 -12.94, 
15.22 60 -4.94, 
0 90 -16, 
9.4 100 -12.94, 
12.94 100 -9.4, 
15.22 100 -4.94, 
16 90 0, 
0 100 -16, 
12.82 116 -9.32, 
4.85 128 -14.93, 
9.23 128 -12.7, 
14.93 128 -4.85, 
0 140 -15, 
12.14 140 -8.82, 
4.33 152 -13.31, 
8.23 152 -11.33, 
13.31 152 -4.33, 
6.58 164 -9.06, 
10.65 164 -3.46, 
0 164 -11.2, 
6.71 172 -4.88, 
1.73 176 -5.33, 
3.29 176 -4.53, 
5.33 176 -1.73, 
0 176 -5.6, 
2.91 178 -2.11, 
0.5 179.6 -1.52, 

14.27   -110   4.64, 
8.82   -110   12.14, 
0   -110   15, 
13.31   -120   4.33, 
8.23   -120   11.33, 
0   -120   14, 
9.06   -139   6.58, 
6.58   -139   9.06, 
11.2   -139   0, 
4.88   -150   6.71, 
0   -139   11.2, 

6.71   -150   4.88, 
2.56   -150   -7.9, 
4.88 -150   -6.71, 
7.9   -150   -2.56, 
0   -139   -11.2, 
9.06   -139   -6.58, 
4.33   -120   -13.31, 

8.23   -120   -11.33, 
13.31   -120   -4.33, 
8.82   -110   -12.14, 
14.27   -110   -4.64, 
0   -110   -15, 
12.7   -90   -9.23, 
4.94   -80   -15.22, 
9.4   -80   -12.94, 
15.22   -80   -4.94, 
0   -80   -16, 
12.94   -60   -9.4, 
4.94   -30   -15.22, 
9.4   -30   -12.94, 
15.22   -30   -4.94, 
0  -30   -16, 

12.94   0   -9.4, 
4.94 30 -15.22, 
9.4 30 -12.94, 
15.22 30 -4.94, 
0 30 -16, 
12.94 60 -9.4, 
4.94 100 -15.22, 
4.94 90 -15.22, 
9.4 90 -12.94, 
12.94 90 -9.4, 
15.22 90 -4.94, 
4.89 116 -15.07, 
9.32 116 -12.82, 
15.07 116 -4.89, 
0 128 -15.7, 
12.7 128 -9.23, 
4.64 140 -14.27, 
8.82 140 -12.14, 
14.27 140 -4.64, 
0 152 -14, 
11.33 152 -8.23, 
3.46 164 -10.65, 
9.06 164 -6.58, 
2.56 172 -7.9, 
4.88 172 -6.71, 
7.9 172 -2.56, 
0 172 -8.3, 
4.53 176 -3.29, 
1.1 178 -3.42, 
2.11 178 -2.91, 
3.42 178 -1.1, 
0 179.6 -1.6, 
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0.94 179.6 -1.29, 1.29 179.6 -0.94, 
1.52 179.6 -0.5, 1 89 21, 
0 90 21, 1 89 16, 
3 83 21, 3 83 16, 
3 71 21, 3 71 16, 
0 60 21, 1 89 25, 
0 90 25, 3 83 25, 
3 82 24, 3 77 24, 
3 71 25, 0 60 25, 
1 89 29, 0 90 29, 
3 83 29, 3 81 26, 
3 77 26, 3 71 29, 
0 60 29, 1 89 34, 
0 90 34, 3 83 34, 
3 71 34, 0 60 34, 
0 86 36, 0 81 36, 
9 71 25, 9 75 26, 
9 79 26, 9 81 25, 
9 80 24.3, 9 75 24.3, 
15 71 25, 15 75 26, 
15 77 26, 15 79 25, 
15 78 24.6, 15 75 24.6, 
-4.94 60 15.22, -3 71 16, 
-3 83 16, -4.94 90 15.22, 
-1 89 16, -9.4 90 12.94, 
-9.4 60 12.94, -12.94 90 9.4, 
-12.94 60 9.4, -15.22 90 4.94, 
-15.22 60 4.94, -16 90 0, 
-16 60 0, -15.22 90 -4.94, 
-15.22 60 -4.94, -12.94 90 -9.4, 
-12.94 60 -9.4, -9.4 90 -12.94, 
-9.4 60 -12.94, -4.94 90 -15.22, 
-4.94 60 -15.22, 0 60 -16, 
-15 77 26, -15 78 24.6, 
-15 79 25, -15 75 24.6, 
-15 75 26, -15 71 25, 
-9 71 25, -9 75 24.3, 
-9 80 24.3, -9 81 25, 
-9 79 26, -9 75 26, 
-3 71 25, -3 77 24, 
-3 82 24, -3 83 25, 
-3 81 26, -3 77 26, 
-3 71 34, -3 83 34, 
-1 89 34, -3 71 29, 
-3 83 29, -1 89 29, 
-1 89 25, -3 71 21, 
-3 83 21, -1 89 21, 
-1.6 179.6 0, -1.52 179.6 -0.5, 
-1.29 179.6 -0.94, -0.94 179.6 -1.29, 
-0.5 179.6 -1.52, -3.42 178 -1.1, 
-2.91 178 -2.11, -2.11 178 -2.91, 
-1.1 178 -3.42, -3.6 178 0 
-5.6 176 0, -5.33 176 -1.73, 
-3.29 176 -4.53, -1.73 176 -5.33, 
0 178 -3.6, -8.3 172 0, 
-6.71 172 -3.88, -4.53 176 -3.29, 
-4.88 172 -6.71, -11.2 164 0, 
-7.9 172 -2.56, -9.06 164 -6.58, 
-6.58 164 -9.06, -2.56 172 -7.9, 
-14 152 0, -10.65 164 -3.46, 
-13.31 152 -4.33, -8.23 152 -11.33, 
-4.33 152 -13.31, -3.46 164 -10.65, 
-14.27 140 -4.64, -12.14 140 -8.82, 
-11.33 152 -8.23, -8.82 140 -12.14, 
-4.64 140 -14.27, -15 140 0, 
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-14.93 128 -4.85, 
-9.23 128 -12.7, 
-15.7 128 0, 
-12.82 116 -9.32, 
-4.89 116 -15.07, 
-16 100 0, 
-9.4 100 -12.94, 
-15.22 100 -4.94, 
-15.22 30 -4.94, 
-9.4 30 -12.94, 
-16 30 0, 
-12.94 0 -9.4, 
-4.94 0 -15.22, 
-15.22 -30 -4.94, 
-9.4 -30 -12.94, 
-16 -30 0, 
-12.94 -60 -9.4, 
-4.94 -60 -15.22, 
-15.22 -80 -4.94, 
-9.4 -80 -12.94, 
-16 -80 0, 
-14.93 -90 -4.85, 
-4.85 -90 -14.93, 
-14.27 -110 -4.64, 
-8.82 -110 -12.14, 
-14 -120 0, 
-12.14 -110 -8.82, 
-4.33 -120 -13.31, 
-9.06 -139 -6.58, 
-6.58 -139 -9.06, 

-139 0, 
-150 -6.71, 

.3 -150 0, 

.56 -150 7.9, 

.71 -150 4.88, 

.46 -139 10.65, 

.06 -139 6.58, 

.33 -120 13.31, 
-11.33 -120 8.23, 
-4.64 -110 14.27, ' 
-12.14 -110 8.82, 
-4.85 -90 14.93, 
-12.7 -90 9.23, 
-4.94 -80 15.22, 
-12.94 -80 9.4, 
-4.94 -60 15.22, 
-12.94 -60 9.4, 
-4.94 -30 15.22, 
-12.94 -30 9.4, 
-4.94 0 15.22, 
-12.94 0 9.4, 
-4.94 30 15.22, 
-12.94 30 9.4, 
-4.94 100 15.22, 
-12.94 100 9.4, 
-4.89 116 15.07, 
-12.82 116 9.32, 
-4.85 128 14.93, 
-12.7 128 9.23, 
-4.64 140 14.27, 
-12.14 140 8.82, 
-4.33 152 13.31, 
-11.33 152 8.23, 
-3.46 164 10.65, 
-9.06 164 6.58, 

-11.2 
-4.88 

-12.7 128 -9.23, 
-4.85 128 -14.93, 
-15.07 116 -4.89, 
-9.32 116 -12.82, 
-15.85 116 0, 
-12.94 100 -9.4, 
0 116 -15.85, 
-4.94 100 -15.22, 
-12.94 30 -9.4, 
-4.94 30 -15.22, 
-15.22 0 -4.94, 
-9.4 0 -12.94, 
-16 0 0, 
-12.94 -30 -9.4, 
-4.94 -30 -15.22, 
-15.22 -60 -4.94, 
-9.4 -60 -12.94, 
-16 -60 0, 
-12.94 -80 -9.4, 
-4.94 -80 -15.22, 
-15.7 -90 0, 
-9.23 -90 -12.7, 
-15 -110 0, 
-12.7 -90 -9.23, 

-4.64 -110 -14.27, 
-13.31 -120 -4.33, 
-8.23 -120 -11.33, 
-10.65 -139 -3.46, 
-11.33 -120 -8.23, 
-3.46 -139 -10.65, 

-7.9 -150 -2.56, 
-2.56 -150 -7.9, 
-6.71 -150 -4.88, 
-4.88 -150 6.71, 
-7.9 -150 2.56, 
-6.58 -139 9.06, 
-10.65 -139 3.46, 
-8.23 -120 11.33, 
-13.31 -120 4.33, 
-8.82 -110 12.14, 
-14.27 -110 4.64, 
-9.23 -90 12.7, 
-14.93 -90 4.85, 
-9.4 -80 12.94, 
-15.22 -80 4.94, 
-9.4 -60 12.94, 
-15.22 -60 4.94, 
-9.4 -30 12.94, 
-15.22 -30 4.94, 
-9.4 0 12.94, 

-15.22 0 4.94, 
-9.4 30 12.94, 
-15.22 30 4.94, 
-9.4 100 12.94, 
-15.22 100 4.94, 
-9.32 116 12.82, 
-15.07 116 4.89, 
-9.23 128 12.7, 
-14.93 128 4.85, 
-8.82 140 12.14, 
-14.27 140 4.64, 
-8.23 152 11.33, 
-13.31 152 4.33, 
-6.58 164 9.06, 
-10.65 164 3.46, 
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-2.56 172 7.9, 
-6.71 172 4.88, 
-1.73 176 5.33, 
-4.53 176 3.29, 
-1.1 178 3.42, 
-2.91 178 2.11, 
-0.5 179.6 1.52, 
-1.29 179.6 0.94, 
1.21 -175 0.88, 

-4.88 172 6.71, 
-7.9 172 2.56, 
-3.29 176 4.53, 
-5.33 176 1.73, 
-2.11 178 2.91, 
-3.42 178 1.1, 
-0.94 179.6 1.29, 
-1.52 179.6 0.5, 
-1.21 -175 -0.88 ] 

creaseAngle 1.5708 
solid FALSE 
coordlndex [ o, 1, 2, -1, 0, 3, 1, -1, 

0, 4, 3, -1, 0, 5, 4, -1, 
5, 6, 4, -1, 5, 7, 6, -1, 
8, 9, 10, -1, 9, 11, 10, -1, 
11 12 , 10, -1, 10 12, 13, -1, 
12 14 , 13, -1, 14 15, 13, -1, 
16 17 , 18, -1, 19 20, 21, -1, 
18 20 , 19, -1, 22 23, 24, -1, 
16 25 , 17, -1, 17 26, 20, -1, 
20 26 , 21, -1, 21 27, 19, -1, 
19 28 , 18, -1, 18 29, 16, -1, 
14 12 , 29, -1, 12 26, 25, -1, 
11 9, 26, -1, 6, 22, 4, -1, 
4, 30, 3, -1, 3, 23, 1, -1, 
10 13 31, -1, 31 32, 33, -1, 
33 5, 0, -1, 34, 35, 36, -1, 
37 36 38, -1, 39 37, 40, -1, 
41 23 42, -1, 43 42, 44, -1, 
6, 43, 22, -1, 45, 46, 47, -1, 
48 46 45, -1, 49 50, 48, -1, 
51 50 52, -1, 53 52, 54, -1, 
55 53 56, -1, 57 55, 46, -1, 
58 46 59, -1, 60 59, 50, -1, 
22 44 23, -1, 51 57, 58, -1, 
53 55 57, -1, 60 51, 58, -1, 
49 40 61, -1, 48 40, 49, -1, 
39 40 48, -1, 45 39, 48, -1, 
47 39 45, -1, 62 39, 47, -1, 
35 6, 7, -1, 35, ' 13, 6, -1, 
63 43 35, -1, 63 41, 43, -1, 
63 i. 41, -1, 63, 2, 1, -I,' 
64 65 66, -1, 64 67, 65, -1, 
64 68 67, -1, 64 69, 68, -1, 
69 70 68, -1, 69 71, 70, -1, 
62 47 72, -1, 47 73, 72, -1, 
73 74 72, -1, 72 74, 75, -1, 
74 49 75, -1, 49 61, 75, -1, 
76 77 78, -1, 79 80, 81, -1, 
78 80 79, -1, 82 83, 84, -1, 
76 85 77, -1, 77 86, 80, -1, 
80 86 81, -1, 81 56, 79, -1, 
79 52 78, -1, 78 50, 76, -1, 
49 74 50, -1, 74 86, 85, -1, 
73 47 86, -1, 70 82, 68, -1, 
68 87 67, -1, 67 83, 65, -1, 
72 75 88, -1, 88 89, 90, -1, 
90 69 64, -1, 91 92, 93, -1, 
94 93 95, -1, 96 94, 97, -1, 
98 83 99, -1, 10( 3, 99, 101, -1, 
70 10( 3, 82, -1, 1( 32, 103, 9, -1, 
10' 1, 1( 33, 102, -1, 14, 29, 104, -1, 
io; 5, 2! 3, 28, -1, 1( 36, 28, 107, -1, 
10! 3, K 36, 27, -1, : L09, 108, 103, -1, 
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110, 103, 111 
82, 101, 83, 
106, 108, 109 
14, 97, 15, - 
96, 97, 104, 
9, 96, 102, - 
92, 70, 71, - 
113, 100, 92, 
113, 65, 98, 
114, 115, 116 
114, 117, 118 
114, 119, 120 
116, 122, 117 
118, 123, 119 
125, 126, 121 
122, 128, 123 
124, 130, 131 
127, 133, 134 
128, 135, 129 
132, 137, 138 
133, 140, 135 
141, 142, 136 
144, 145, 139 
140, 147, 148 
143, 150, 145 
152, 153, 146 
147, 154, 149 
150, 157, 151 
153, 158, 154 
161, 162, 156 
157, 164, 158 
159, 165, 166 
162, 169, 163 
164, 170, 165 
168, 173, 174 
169, 176, 170 
178, 179, 171 
182, 183, 184 
186, 187, 188 
191, 192, 181 
183, 194, 185 
187, 196, 189 
192, 199, 193 
194, 201, 195 
203, 204, 198 
199, 206, 200 
201, 208, 202 
204, 211, 205 
206, 213, 207 
215, 216, 210 
211, 218, 212 
213, 220, 214 
217, 222, 223 
218, 225, 219 
221, 227, 222 
229, 230, 224 
225, 232, 226 
228, 234, 235 
230, 236, 231 
238, 239, 233 
234, 240, 236 
237, 241, 242 
239, 10, 244, 
240, 0, 241, - 
246, 247, 113, 

, -1 112, 111, 29, -1, 
-1,    105,   109,   110,   - -1, 
,   -1 112, 105, 110, -1, 
1,   104,   97,   14, -1, 
-1,    102,   96,   104,   -1, 
1,   8 96, 9,   -1 
1,   92,    100,   70, -1, 
-1, 113, 98,   100,   - 1, 

-1,    113,   66,   65 ,   -1, 
,   -1, 114, 116, 117, -1, 
,   -1, 114, 118, 119, -1, 
,   -1, 115, 121, 116, -1, 
,   -1, 117, 123, 118, -1, 
,   -1, 119, 124, 120, -1, 
,   -1, 121, 127, 122, -1, 
,   -1, 123, 129, 124, -1, 
,   -1, 126, 132, 127, -1, 
,   -1, 134, 135, 128, -1, 
,   -1, 129, 136, 130, -1, 
,   -1, 138, 139, 133, -1, 
,   -1, 135, 140, 141, -1, 
,   -1, 137, 143, 144, -1, 
,   -1, 139, 146, 140, -1, 
,   -1, 148, 149, 142, -1, 
,   -1, 145, 151, 152, -1, 
,   -1, 146, 153, 147, -1, 
,   -1, 155, 156, 150, -1, 
,   -1, 151, 158, 153, -1, 
,   -1, 154, 159, 160, -1, 
,   -1, 156, 163, 157, -1, 
,   -1, 158, 164, 159, -1, 
,   -1, 167, 168, 162, -1, 
,   -1, 163, 170, 164, -1, 
,   -1, 165, 171, 172, -1, 
,   -1, 174, 175, 169, -1, 
,   -1, 170, 177, 178, -1, 
,   -1, 180, 181, 182, -1, 
,   -1, 184, 185, 186, -1, 
,   -1, 188, 189, 190, -1, 
,   -1, 181, 193, 183, -1, 
,   -1, 185, 195, 187, -1, 
,   -1, 197, 198, 192, -1, 
,   -1, 193, 200, 194, -1, 
,   -1, 195, 202, 196, -1, 
,   -1, 198, 205, 199, -1, 
,   -1, 200, 207, 201, -1, 
,   -1, 209, 210, 204, -1, 

-1, 205, 212, 206, -1, 
-1, 207, 214, 208, -1, 
-1, 210, 217, 211, -1, 
-1, 212, 219, 213, -1, 
-1, 216, 221, 217, -1, 
-1, 223, 224, 218, -1, 
-1, 219, 226, 220, -1, 
-1, 222, 228, 229, -1, 
-1, 224, 231, 225, -1, 
-1, 227, 233, 228, -1, 
-1, 235, 236, 230, -1, 
-1, 231, 237, 232, -1, 
-1, 233, 239, 234, -1, 
-1, 236, 241, 237, -1, 
-1, 243, 10, 239, -1, 

-1, 244, 33,   240,   - 1, 
-1,   241,   0 ,   245 ,   -1, 

-1, 248, 113, 91, -1, 
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249 , 91, 94, - 1, 250, 249, 96, -1 / 
243 , 96, 8, -1 , 251, 252, 246, -1 , 
253 , 246 , 248, -1 , 254 , 248 , 249, -1, 
255 , 254 , 250, -1 , 238 , 250 , 243, -1, 
256 , 257 , 251, -1 , 258 , 256 , 253, -1, 
259 , 253 , 254, -1 , 260 , 254 , 255, -1, 
227 , 255 , 238, -1 , 261 , 257 , 256, -1, 
262 , 256 , 258, -1 , 263 , 258 , 259, -1, 
264 , 263 , 260, -1 , 221 , 264 , 227, -1, 
265 , 266 , 261, -1 , 267 , 261 , 262, -1, 
268 , 262 , 263, -1 , 269 , 268 , 264, -1, 
216 , 269 , 221, -1 , 270 , 271 , 265, -1, 
272 , 265 , 267, -1 , 273 , 267 , 268, -1, 
274 273 , 269, -1 , 215 , 274 , 216, -1, 
275 276 , 270, -1 277 270 , 272, -1, 
278 272 , 273, -1 279 273 , 274, -1, 
209 274 , 215, -1 , 280 281 , 275, -1, 
282 275 277, -1 283 277 , 278, -1, 
284 278 279, -1 203 279 209, -1, 
285 286 280, -1 287 280 , 282, -1, 
288 282 283, -1 289 283 284, -1, 
197 284 203, -1 290 291 285, -1, 
292 285 287, -1 293 287 288, -1, 
294 288 289, -1 191 289 197, -1, 
295 296 290, -1 297 290 292, -1, 
298 292 293, -1 299 293 294, -1, 
180 294 191, -1 300 301 302, -1, 
303 302 304, -1 305 304 306, -1, 
307 306 308, -1 168 308 309, -1, 
310 311 300, -1 312 310 303, -1, 
313 303 305, -1 314 305 307, -1, 
167 314 168, -1 315 316 310, -1, 
317 315 312, -1 318 312 313, -1, 
319 313 314, -1 161 314 167, -1, 
320 321 315, -1 322 320 317, -1, 
323 317 318, -1 324 318 319, -1, 
155 319 161, -1 325 326 320, -1, 
327 325 322, -1 328 322 323, -1, 
329 323 324, -1 143 324 155, -1, 
330 326 325, -1 331 325 327, -1, 
332 327 328, -1 333 332 329, -1, 
137 333 143, -1 334 335 330, -1, 
336 334 331, -1 337 331 332, -1, 
338 332 333, -1 132 338 137, -1, 
339 340 334, -1 341 339 336, -1, 
342 336 337, -1 343 337 338, -1, 
126, 343 132, -1 344 345 339, -1, 
346, 339, 341, -1, 347 341 342, -1, 
348, 347, 343, -1, 125 348 126, -1, 
349, 350, 344, -1, 351 349 346, -1, 
352, 346, 347, -1, 353, 347 348, -1, 
115, 348, 125, -1, 114, 350 349, -1, 
114, 349, 351, -1, 114, 351 352, -1, 
114, 352, 353, -1, 114, 353, 115, -1, 
179, 354, 355, -1, 356, 357, 354, -1, 
358, 359, 357, -1, 360, 361, 359, -1, 
355, 362, 363, -1, 354, 364, 362, -1, 
357, 365, 364, -1, 357, 366, 365, -1, 
357, 359, 366, -1, 359, 367, 366, -1, 
359, 368, 367, -1, 363, 369 370, -1, 
362, 371, 369, -1, 364, 372 371, -1, 
372, 373, 371, -1, 373 374 371, -1, 
373, 367, 374, -1, 367 375 374, -1, 
370, 376, 377, -1, 369 378 376, -1, 
371, 379, 378, -1, 374 380 379, -1, 
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381, 377, 376, -1, 381, 376, 378, -1, 
381, 378, 382, -1, 382, 378, 379, -1, 
382, 379, 380, -1, 383, 367, 384, -1, 
384, 373, 385, -1, 385, 372, 386, -1, 
386, 365, 387, -1, 387, 366, 388, -1, 
388, 367, 383, -1, 389, 384, 390, -1, 
390, 384, 391, -1, 391, 385, 392, -1, 
392, 387, 393, -1, 393, 388, 394, -1, 
394, 383, 389, -1, 390, 394, 389, -1, 
391, 394, 390, -1, 391, 392, 393, -1, 
301, 295, 302, -1, 302, 297, 304, -1, 
304, 298, 306, -1, 306, 299, 308, -1, 
308, 180, 309, -1, 309, 182, 173, -1, 
173, 184, 175, -1, 175, 186, 176, -1, 
176, 188, 177, -1, 177, 356, 179, -1, 
177, 358, 356, -1, 177, 188, 358, -1, 
188, 360, 358, -1, 188, 190, 360, -1, 
395, 396, 190, -1, 395, 397, 396, -1, 
398, 397, 395, -1, 398, 399, 397, -1, 
398, 179, 399, -I, 400, 395, 401, -1, 
402, 401, 403, -1, 404, 403, 405, -1, 
406, 405, 407, -1, 408, 407, 409, -1, 
410, 409, 411, -1, 412, 411, 413, -1, 
414, 413, 415, -1, 301, 415, 416, -1, 
417, 418, 419, -1, 417, 420, 418, -1, 
421, 422, 420, -1, 420, 423, 424, -1, 
418, 424, 425, -1, 419, 425, 426, -1, 
417, 419, 427, -1, 421, 417, 428, -1, 
422, 428, 423, -1, 424, 429, 430, -1, 
425, 430, 431, -1, 426, 431, 432, -1, 
427, 426, 433, -1, 428, 427, 434, -1, 
423, 428, 429, -1, 382, 380, 435, -1, 
382, 435, 436, -1, 381, 382, 436, -1, 
381, 436, 437, -1, 381, 437, 377, -1, 
438, 380, 375, -1, 439, 435, 438, -1, 
440, 436, 439, -1, 370, 437, 440, -1, 
429, 375, 368, -1, 434, 438, 429, -1, 
434, 439, 438, -1, 433, 439, 434, -1, 
432, 439, 433, -1, 441, 439, 432, -1, 
363, 440, 441, -1, 442, 368, 361, -1, 
442, 430, 429, -1, 443, 430, 442, -1, 
443, 431, 430, -1, 443, 432, 431, -1, 
444, 432, 443, -1, 355, 441, 444, -1, 
396, 361, 190, -1, 397, 442, 396, -1, 
399, 443, 397, -1, 179, 444, 399, -1, 
114, 445, 446, -1, 114, 446, 447, -1, 
114, 447, 448, -1, 114, 448, 449, -1, 
114, 449, 350, -1, 445, 450, 446, -1, 
446, 451, 447, -1, 447, 452, 448, -1, 
448, 452, 449, -1, 449, 453, 350, -1, 
454, 455, 450, -1, 450, 456, 451, -1, 
451, 457, 452, -1, 452, 458, 453, -1, 
453, 345, 459, -1, 455, 460, 456, -1, 
456, 461, 462, -1, 462, 463, 457, -1, 
457, 463, 458, -1, 458, 340, 345, -1, 
460, 464, 465, -1, 465, 466, 461, -1, 
461, 467, 463, -1, 463, 467, 468, -1, 
468, 335, 340, -1, 464, 469, 470, -1, 
470, 471, 466, -1, 466, 472, 467, -1, 
467, 473, 474, -1, 474, 326, 335, -1, 
469, 475, 471, -1, 471, 476, 477, -1, 
477, 478, 472, -1, 472, 478, 473, -1, 
473, 479, 326, -1, 480, 481, 475, -1, 
475, 482, 476, -1, 476, 483, 478, -1, 
478, 483, 479, -1, 479, 484, 321, -1, 
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485 486 , 481, -1 481 , 487 , 482, -1, 
482 , 488 , 483, -1 , 483 , 488 , 484, -1, 
484 , 489 , 316, -1 , 490 , 491 , 486, -1, 
486 492 , 487, -1 , 487 , 493 , 488, -1, 
488 493 , 489, -1 , 489 , 311 , 494, -1, 
491 408 , 495, -1 495 , 410 , 492, -1, 
492 412 , 493, -1 493 , 414 , 496, -1, 
496 301 , 311, -1 407 , 497 , 409, -1, 
409 498 , 411, -1 411 , 499 , 413, -1, 
413 500 , 415, -1 415 , 296 , 416, -1, 
501 502 , 497, -1 497 503 , 498, -1, 
498 504 , 499, -1 499 505 500, -1, 
500 291 , 296, -1 506 , 507 502, -1, 
502 508 , 503, -1 503 509 , 504, -1, 
504 510 , 505, -1 505 , 286 291, -1, 
511 512 , 507, -1 507 513 , 508, -1, 
508 514 509, -1 509 515 510, -1, 
510 281 286, -1 516 517 512, -1, 
512 518 513, -1 513 519 514, -1, 
514 520 515, -1 515 276 281, -1, 
521 522 517, -1 517 523 518, -1, 
518 524 519, -1 519 525 520, -1, 
520 271 276, -1 522 526 523, -1, 
523 527 528, -1 528 529 524, -1, 
524 530 525, -1 525 266 271, -1, 
526 531 527, -1 527 532 533, -1, 
533 534 529, -1 529 535 530, -1, 
530 257 266, -1 531 536 532, -1, 
532 537 538, -1 538 539 534, -1, 
534 539 535, -1 535 540 257, -1, 
541 542 536, -1 536 542 537, -1, 
537 543 539, -1 539 544 540, -1, 
540 544 252, -1 545 72, 542, -1, 
542 72, 546, -1, 546, 90, 543, - 1, 
543 64, 544, -1, 544, 64, 247, - 1, 
547 245 63, -1, 548, 63, 34, -1 / 
549 34, 37, - 1, 550, 549, 39, -1 / 
545 39, 62, - 1, 551, 242, 547, - 1, 
552 547 548, -1 553 548 549, -1, 
554 553 550, -1 541 550 545, -1, 
555 232 551, -1 556 555 552, -1, 
557 552 553, -1 558 553 554, -1, 
531 554 541, -1 559 232 555, -1, 
560 555 556, -1 561 556 557, -1, 
562 561 558, -1 526 562 531, -1, 
563 226 559, -1 564 559 560, -1, 
565 560 561, -1 566 565 562, -1, 
522 566 526, -1 567 220 563, -1, 
568 563 564, -1 569 564 565, -1, 
570 569 566, -1 521 570 522, -1, 
571 214 567, -1 572 567 568, -1, 
573, 568 569, -1 574 569 570, -1, 
516, 570 521, -1 575 208 571, -1, 
576, 571 572, -1 577 572 573, -1, 
578 573 574, -1 511 574 516, -1, 
579, 202 575, -1 580 575 576, -1, 
581, 576 577, -1 582 577 578, -1, 
506, 578 511, -1 583 196 579, -1, 
584, 579 580, -1 585 580 581, -1, 
586, 581 582, -1 501 582 506, -1, 
395, 189 583, -1 401 583 584, -1, 
403 584 585, -1 405 585 586, -1, 
407 586 501, -1 587 179 398, -1, 
588 398 400, -1 589 400 402, -1, 
590 402 404, -1 491 404 406, -1, 
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591, 171, 587, -1, 592, 591, 588, -1, 
593, 588, 589, -1, 594, 589, 590, -1, 
490, 594, 491, -1, 595, 166, 591, -1, 
596, 595, 592, -1, 597, 592, 593, -1, 
598, 593, 594, -1, 485, 594, 490, -1, 
599, 160, 595, -1, 600, 599, 596, -1, 
601, 596, 597, -1, 602, 597, 598, -1, 
480, 598, 485, -1, 603, 149, 599, -1, 
604, 603, 600, -1, 605, 600, 601, -1, 
606, 601, 602, -1, 469, 602, 480, -1, 
607, 149, 603, -1, 608, 603, 604, -1, 
609, 604, 605, -1, 610, 609, 606, -1, 
464, 610, 469, -1, 611, 142, 607, -1, 
612, 611, 608, -1, 613, 608, 609, -1, 
614, 609, 610, -1, 460, 614, 464, -1, 
615, 136, 611, -1, 616, 615, 612, -1, 
617, 612, 613, -1, 618, 613, 614, -1, 
455, 618, 460, -1, 619, 130, 615, -1, 
620, 615, 616, -1, 621, 616, 617, -1, 
622, 621, 618, -1, 454, 622, 455, -1, 
623, 120, 619, -1, 624, 623, 620, -1, 
625, 620, 621, -1, 626, 621, 622, -1, 
445, 622, 454, -1, 114, 120, 623, -1, 
114, 623, 624, -1, 114, 624, 625, -1, 
114, 625, 626, -1, 114, 626, 445, -1, 
20, 18, 17, -1, 24 , 23, 30, -1, 
25, 16, 29, -1, 26 , 17, 25, -1, 
21, 26, 27, -1, 19 , 27, 28, -1, 
28, 19, 107, -1, 29, 18 , 28, -1, 
29, 12,   25,   -1,   26,   12,   11,   -1, 
26, 9,   27,   -1,   4,   22,   24,   -1, 
30, 4,   24,   -1,   23,   3,   30,   -1, 
31, 13,   627,   -1,   32,   31,   627,   -1, 
5,   33,   32,   -1,   35,   34,   63,   -1, 
36, 37,   34,   -1,   40,   37,   38,   -1, 
23, 41,   1,   -1,   42,   43,   41,   -1, 
22, 43,   44,   -1,   47,   46,   56,   -1, 
46, 48, 59, -1, 48, 50, 59, -1, 
50, 51, 60, -1, 52, 53, 51, -1, 
56, 53, 52, -1, '46, 55, 56, -1, 
46, 58, 57, -1, 59, 60, 58, -1, 
23, 44, 42, -1, 57, 51, 53, -1, 
80, 78, 77, -1, 84, 83, 87, -1, 
85, 76, 50, -1, 86, 77, 85, -1, 
81, 86, 56, -1, 79, 56, 52, -1, 
52, 79, 54, -1, 50, 78, 52, -1, 
50, 74, 85, -1, 86, 74, 73, -1, 
86, 47, 56, -1, 68, 82, 84, -1, 
87, 68, 84, -1, 83, 67, 87, -1, 
88,   75,   628,   -1,   89,   88,   628,   -1 
69,   90,   89,   -1,   92,   91,   113,   -1, 
93,   94,   91,   -1,   97,   94,   95,   -1, 
83,   98,   65,   -1,   99,   100,   98,   -1, 
82, 100, 101, -1, 9, 103, 27, -1 
103, 104, 111, -1, 104, 29, 111, 
29, 105, 112, -1, 28, 106, 105, -1 
27, 106, 28, -1, 103, 108, 27, -1, 
103,   110,   109,   -1,   111,   112,   110, 
83, 101,   99,   -1,   109,   105,   106,   -1 
121,   115,   125,   -1,   122,   116,   121, 

-1, 119, 123, 124, 
-1, 121, 126, 127, 
-1, 128, 122, 134, 
-1, 130, 124, 129, 
-1,   133,   127,   138, 

-1, 

123, 117, 122 
120, 124, 131 
122, 127, 134 
129, 123, 128 
127, 132, 138 
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-1, 
-1, 
-1, 
-1, 
-1, 
-1, 
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135 , 134 , 133, -1 , 129 , 135 , 141, -1, 
136 , 129 , 141, -1 , 138 , 137 , 144, -1, 
139 , 138 , 144, -1 , 140 , 133 , 139, -1, 
141 , 140 , 148, -1 , 142 , 141 , 148, -1, 
144 , 143 , 145, -1 139 , 145 152, -1, 
146 139 , 152, -1 147 , 140 146, -1, 
149 148 , 147, -1 150 143 155, -1, 
151 145 150, -1 , 153 152 151, -1, 
147 153 154, -1 149 , 154 160, -1, 
156 155 161, -1 157 , 150 156, -1, 
158 151 157, -1 154 158 159, -1, 
160 159 166, -1 162 161 167, -1, 
163 156 162, -1 164 157 163, -1, 
159 164 165, -1 166 165 172, -1, 
162 168 174, -1 169 162 174, -1, 
170 163 169, -1 165 170 178, -1, 
171 165 178, -1 173 168 309, -1, 
175 174 173, -1 176 169 175, -1, 
177 170 176, -1 179 178 177, -1, 
181 180 191, -1 183 182 181, -1, 
185 184 183, -1 187 186 185, -1, 
189 188 187, -1 192 191 197, -1, 
193 181 192, -1 194 183 193, -1, 
195 185 194, -1 196 187 195, -1, 
198 197 203, -1 199 192 198, -1, 
200 193 199, -1 201 194 200, -1, 
202 195 201, -1 204 203 209, -1, 
205 198 204, -1 206 199 205, -1, 
207 200 206, -1 208 201 207, -1, 
210 209 215, -1 211 204 210, -1, 
212 205 211, -1 213 206 212, -1, 
214 207 213, -1 210 216 217, -1, 
211 217 223, -1 218 211 223, -1, 
219 212 218, -1 220 213 219, -1, 
217 221 222, -1 223 222 229, -1, 
224 223 229, -1 225 218 224, -1, 
226 219 225, -1 222 227 228, -1, 
229 228 235, -1, 230 229 235, -1, 
231, 224 230, -1, 232 225 231, -1, 
233, 227 238, -1, 234 228 233, -1, 
236, 235 234, -1, 231 236 237, -1, 
232, 237 242, -1, 239 238, 243, -1, 
234, 239 244, -1, 240, 234, 244, -1, 
241, 236, 240, -1, 242 241, 245, -1, 
10, 243, 8, -1 , 2t 14, IC ), 31, -1, 
33, 244, 31, - 1, c ), 24C ), 33, -1, 
245, 0, 1 , -1, ii: , 24" ', 66, -1, 
113, 248, 246, -i, 91, 249, 248, -1, 
96, 249, 94, - 1, £ )6, 21 13, 2E )0, -1 1 

246, 252, 247, -i, 246, 253, 251, -1, 
248, 254, 253, -i. 250, 254, 249, -1, 
250, 238, 255, -i. 251, 257, 252, -1, 
253, 256, 251, -i. 253, 259, 258, -1, 
254, 260, 259, -i, 255, 227, 260, -1, 
257, 261, 266, -i, 256, 262, 261, -1, 
258, 263, 262, -i, 260, 263, 259, -1, 
227, 264, 260, -i. 266, 265, 271, -1, 
261, 267, 265, -i, 262, 268, 267, -1, 
264, 268, 263, -i, 221, 269, 264, -1, 
271, 270, 276, -i, 265, 272, 270, -1, 
267, 273, 272, -i, 269, 273, 268, -1, 
216, 274, 269, -i, 276, 275, 281, -1, 
270, 277, 275, -i, 272, 278, 277, -1, 
273, 279, 278, -i, 274, 209, 279, -1, 
281, 280, 286, -i, 275, 282, 280, -1, 
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277 283 282, -1 278 284 283, -1, 
279 203 284, -1 286, 285 291, -1, 
280, 287 285, -1 282, 288, 287, -1, 
283, 289 288, -1 284, 197, 289, -1, 
291, 290, 296, -1 285, 292, 290, -1, 
287, 293, 292, -1, 288, 294, 293, -1, 
289, 191, 294, -1, 296, 295, 416, -1, 
290, 297, 295, -1, 292, 298, 297, -1, 
293, 299, 298, -1, 294, 180, 299, -1, 
301, 300, 311, -1, 302, 303, 300, -1, 
304, 305, 303, -1, 306, 307, 305, -1, 
308, 168, 307, -1, 311, 310, 494, -1, 
303, 310, 300, -1, 303, 313, 312, -1, 
305, 314, 313, -1, 168, 314, 307, -1, 
310, 316, 494, -1, 312, 315, 310, -1, 
312, 318, 317, -1, 313, 319, 318, -1, 
314, 161, 319, -1, 315, 321, 316, -1, 
317, 320, 315, -1, 317, 323, 322, -1, 
318, 324, 323, -1, 319, 155, 324, -1, 
320, 326, 321, -1, 322, 325, 320, -1, 
322, 328, 327, -1, 323, 329, 328, -1, 
324, 143, 329, -1, 326, 330, 335, -1, 
325, 331, 330, -1, 327, 332, 331, -1, 
329, 332, 328, -1, 143, 333, 329, -1, 
335, 334, 340, -1, 331, 334, 330, -1, 
331, 337, 336, -1, 332, 338, 337, -1, 
137, 338, 333, -1, 340, 339, 345, -1, 
336, 339, 334, -1, 336, 342, 341, -1, 
337, 343, 342, -1, 132, 343, 338, -1, 
345, 344, 459, -1, 339, 346, 344, -1, 
341, 347, 346, -1, 343, 347, 342, -1, 
126, 348, 343, -1, 344, 350, 459, -1, 
346, 349, 344, -1, 346, 352, 351, -1, 
347, 353, 352, -1, 348, 115, 353, -1, 
354, 179, 356, -1, 357, 356, 358, -1, 
359, 358, 360, -1, 361, 360, 190, -1, 
362, 355, 354, -1, 364, 354, 357, -1, 
368, 359, 361, -1, 369, 363, 362, -1, 
371, 362, 364, -1, 375, 367, 368, -1, 
376, 370, 369, -1, 378, 369, 371, -1, 
379, 371, 374, -1, 380, 374, 375, -1, 
384, 367, 373, -1, 385, 373, 372, -1, 
386, 372, 364, -1, 365, 386, 364, -1, 
366, 387, 365, -1, 367, 388, 366, -1, 
384, 389, 383, -1, 391, 384, 385, -1, 
392, 385, 386, -1, 387, 392, 386, -1, 
388, 393, 387, -1, 383, 394, 388, -1, 
394, 391, 393, -1, 295, 301, 416, -1, 
297, 302, 295, -1, 298, 304, 297, -1, 
299, 306, 298, -1, 180, 308, 299, -1, 
182, 309, 180, -1, 184, 173, 182, -1, 
186, 175, 184, -1, 188, 176, 186, -1, 
395, 400, 398, -1, 401, 402, 400, -1, 
403, 404, 402, -1, 405, 406, 404, -1, 
407, 408, 406, -1, 409, 410, 408, -1, 
411, 412, 410, -1, 413, 414, 412, -1, 
415, 301, 414, -1, 420, 417, 421, -1, 
423, 420, 422, -1, 424, 418, 420, -1, 
425, 419, 418, -1, 427, 419, 426, -1, 
428, 417, 427, -1, 428, 422, 421, -1, 
429, 424, 423, -1, 430, 425, 424, -1, 
431, 426, 425, -1, 433, 426, 432, -1, 
434, 427, 433, -1, 429, 428, 434, -1, 
380, 438, 435, -1, 435, 439, 436, -1, 
436, 440, 437, -1, 437, 370, 377, -1, 
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375 , 429 , 438, -1 , 439 , 441 , 440, -1, 
440 , 363 , 370, -1 , 368 , 442 , 429, -1, 
432 , 444 , 441, -1 , 441 , 355 , 363, -1, 
361 , 396 , 442, -1 , 442 , 397 , 443, -1, 
443 , 399 , 444, -1 , 444 , 179 , 355, -1, 
450 , 445 , 454, -1 , 451 , 446 , 450, -1, 
452 , 447 , 451, -1 , 449 , 452 , 453, -1, 
350 , 453 , 459, -1 , 450 , 455 , 456, -1, 
451 , 456 , 462, -1 , 457 , 451 , 462, -1, 
458 , 452 , 457, -1 , 345 , 453 , 458, -1, 
456 , 460 , 465, -1 , 461 , 456 , 465, -1, 
463 , 462 , 461, -1 , 458 , 463 , 468, -1, 
340 , 458 , 468, -1 , 465 , 464 , 470, -1, 
466 , 465 , 470, -1 , 467 , 461 , 466, -1, 
468 , 467 , 474, -1 335 , 468 , 474, -1, 
470 , 469 471, -1 466 , 471 , 477, -1, 
472 , 466 477, -1 473 , 467 , 472, -1, 
326 , 474 473, -1 475 , 469 , 480, -1, 
476 , 471 475, -1 478 , 477 , 476, -1, 
473. , 478 479, -1 326 , 479 , 321, -1, 
481 480 485, -1 482 , 475 , 481, -1, 
483 476 482, -1 479 , 483 , 484, -1, 
321 484 316, -1 486 485 , 490, -1, 
487 481 486, -1 488 482 487, -1, 
484 488 489, -1 316 489 494, -1, 
486 491 495, -1 492 486 495, -1, 
493 487 492, -1 489 493 496, -1, 
311 489 496, -1 408 491 406, -1, 
410 495 408, -1 412 492 410, -1, 
414 493 412, -1 301 496 414, -1, 
497 407 501, -1 498 409 497, -1, 
499 411 498, -1 500 413 499, -1, 
296 415 500, -.1 502 501 506, .-1, 
503 •497 502, -1 504 498 503, -1, 
505 499 504, -1 291 500 505, -1, 
507 506 511, -1 508 502 507, -1, 
509 503 508, -1 510 504 509, -1, 
286 505 510, -1 512 511 516, -1, 
513 507 512, -1 514 508 513, -1, 
515 509 514, -1 281 510 515, -1, 
517 516 521, -1 518 512 517, -1, 
519 513 518, -1 520 514 519, -1, 
276 515 520, -1, 517 522 523, -1, 
518 523 528, -1, 524 518 528, -1, 
525 519 524, -1, 271 520 525, -1, 
523 526 527, -1, 528 527 533, -1, 
529 528, 533, -1, 530 524 529, -1, 
266 525, 530, -1, 527 531 532, -1, 
533 532, 538, -1, 534 533 538, -1, 
535 529, 534, -1, 257 530 535, -1, 
536 531, 541, -1, 537 532 536, -1, 
539, 538, 537, -1, 535, 539 540, -1, 
257, 540, 252, -1, 542 541 545, -1, 
537, 542, 546, -1, 543 537 546, -1, 
544, 539, 543, -1, 252, 544, 247, -1, 
72, 545, 62, - 1, I >46, ' 12,   81 i, -1, 
90, 546, 88, - l, e i4, 5^ 13, 9C ), -1, 
247, 64, 66, - i, t J3, 2i 15, 2, -1, 
63, 548, 547, -i. 34, I 549, ! 548, - 1, 
39, 549, 37, - i, : 9, 5^ 15, 5E 50, -1 / 
547, 242, 245, -l, 547 552 551, -1, 
548, 553, 552, -i. 550, 553, 549, -1, 
550, 541, 554, -i. 551 232 242, -1, 
552, 555, 551, -i, 552 557 556, -1, 
553, 558, 557, -i. 554 531 558, -1, 
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232, 559, 226, -1, 555, 560, 559, -1, 
556, 561, 560, -1, 558, 561, 557, -1, 
531, 562, 558, -1, 226, 563, 220, -1, 
559, 564, 563, -1, 560, 565, 564, -1, 
562, 565, 561, -1, 526, 566, 562, -1, 
220, 567, 214, -1, 563, 568, 567, -1, 
564, 569, 568, -1, 566, 569, 565, -1, 
522, 570, 566, -1, 214, 571, 208, -1, 
567, 572, 571, -1, 568, 573, 572, -1, 
569, 574, 573, -1, 570, 516, 574, -1, 
208, 575, 202, -1, 571, 576, 575, -1, 
572, 577, 576, -1, 573, 578, 577, -1, 
574, 511, 578, -1, 202, 579, 196, -1, 
575, 580, 579, -1, 576, 581, 580, -1, 
577, 582, 581, -1, 578, 506, 582, -1, 
196, 583, 189, -1, 579, 584, 583, -1, 
580, 585, 584, -1, 581, 586, 585, -1, 
582, 501, 586, -1, 189, 395, 190, -1, 
583, 401, 395, -1, 584, 403, 401, -1, 
585, 405, 403, -1, 586, 407, 405, -1, 
179, 587, 171, -1, 398, 588, 587, -1, 
400, 589, 588, -1, 402, 590, 589, -1, 
404, 491, 590, -1, 171, 591, 172, -1, 
588, 591, 587, -1, 588, 593, 592, -1, 
589, 594, 593, -1, 491, 594, 590, -1, 
591, 166, 172, -1, 592, 595, 591, -1, 
592, 597, 596, -1, 593, 598, 597, -1, 
594, 485, 598, -1, 595, 160, 166, -1, 
596, 599, 595, -1, 596, 601, 600, -1, 
597, 602, 601, -1, 598, 480, 602, -1, 
599, 149, 160, -1, 600, 603, 599, -1, 
600, 605, 604, -1, 601, 606, 605, -1, 
602, 469, 606, -1, 149, 607, 142, -1, 
603, 608, 607, -1, 604, 609, 608, -1, 
606, 609, 605, -1, 469, 610, 606, -1, 
142, 611, 136, -1, 608, 611, 607, -1, 
608, 613, 612, -1, 609, 614, 613, -1, 
464, 614, 610, -1, 136, 615, 130, -1, 
612, 615, 611, -1, 612, 617, 616, -1, 
613, 618, 617, -1, 460, 618, 614, -1, 
130, 619, 131, -1, 615, 620, 619, -1, 
616, 621, 620, -1, 618, 621, 617, -1, 
455, 622, 618, -1, 619, 120, 131, -1, 
620, 623, 619, -1, 620, 625, 624, -1, 
621, 626, 625, -1, 622, 445, 626, -1 ] 

colorlndex   -1 
normalIndex  -1 

} 

] 

}, 
#The Propeller 
Transform { 

translation 178.5 -7.5 9.5 
rotation   0.0 0.0 1.0 1.571 

scale      2.5 2.5 2.5 
children [ 

DEF propeller_movement Transform { 
rotation 1.0 0.0 0.0 0.0 
children 
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hub 

0.0 0.0 
0.0 0.0 
0.1 0.5 

Group { 
children [ 

#The center hub of the propeller 
Shape { 
appearance DEF Bronze Appearance { 

material Material { 
diffuseColor 1.0 1.0 0.0 

}  #end material 
}   #end appearence 
geometry Cylinder { 

radius 0.7 
height 0.5 

}  # end geometry 
},    #end shape 

#Blade 1, oriented to stick out of the right side of the 

DEF Blade Transform 
rotation      1.0  0.0   0.0  1.048 
translation   2.0 
scale 2.0 
children  Shape { 

appearance USE Bronze 
geometry Sphere {} 

}   #end shape 

},       #end transform 
»Blade 2 
Transform { 
rotation 0.0 1.0 0.0 1.26 
children USE Blade 
}, 
#Blade 3 
Transform { 
rotation 0.0 1.0 0.0 2.52 
children USE Blade 

#Blade 4 
Transform { 
rotation 0.0 1.0 0.0 3.78 
children USE Blade 
}, 

»Blade 5 
Transform { 
rotation 0.0 1.0 0.0 5.04 
children USE Blade 
} 

]      # end of children in group 
} # end of Propeller Group 
},    #end of propeller_position Transform 

DEF Blade_Clock TimeSensor { 
cyclelnterval 3.0 
startTime    1.0 

loop TRUE 
}, 
DEF Blade_Path Orientationlnterpolator { 

key [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 
keyValue [0.0 1.0 0.0 0.0, 

0.0 1.0 0.0 0.628, 
0.0 1.0 0.0 1.256, 
0.0 1.0 0.0 1.884, 
0.0 1.0 0.0 2.512, 
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0.0 1.0 0.0 3.14, 
0.0 1.0 0.0 3.768, 
0.0 1.0 0.0 4.396, 
0.0 1.0 0.0 5.024, 
0.0 1.0 0.0 5.652 ] 

#The Vortex Dissipater 
Transform { 

translation 182.5 -7.5 9.5 
rotation   0.0 0.0 1.0 -1.571 
children Shape { 

appearance Appearance { 
material USE  688 Hull 

} 
geometry Cone { 

height 6.0 
bottomRadius 1.7 

}, 

#This section creates the periscope 
Transform { 

translation -76.0 32.0 10.0 
children [ 

Shape  { 
appearance Appearance { 

material DEF Scope_color Material { 
diffuseColor   0.75 0.75 0.75 

} 
} 
geometry Cylinder { 

radius 0.2 
height 9.0 

} 
}, 
Transform { 

translation -0.2 4.3 0.0 
scale 1.2 1.0 0.80 
children Shape  { 

appearance Appearance { 
material USE Scope_color 

} 
geometry Cylinder { 

radius 0.3 
height 0.4 

} 
} 

} 

} 
] 

} 

ROUTE Blade_Clock.fraction_changed TO Blade_Path.set_fraction 
ROUTE Blade_Path.value_changed TO propeller_movement.set_rotation 
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5.      Phoenix_auv.wri 
#VRML V2.0 utf8 

#Model of the Naval Postgraduate School Center for Autonomous 
# Underwater Vehicle (AUV) Research's "Phoenix" AUV. 
# Authors: Martin Whitfield, Don Brutzman, Kevin Byrne 

Viewpoint { 
position 0 0 2 
orientation 0 10 0 
description "Stbd Beam" 

} 

Viewpoint { 
position 2 0 2 
orientation 0 10 .707 
description "Stbd Bow" 

} 

Viewpoint { 
position 2 0 0 
orientation 0 1 0 1.4 
description "Bow" 

} 

Viewpoint { 
position 2 0-2 
orientation 0 10 2.3562 
description "Port Bow" 

} 

Viewpoint { 
position 0 0-2 
orientation 0 10 3.14159267 
description "Port Beam" 

} 

Viewpoint { 
position -2 0 -2 
orientation 0 10 3.9270 
description "Astern Port" 

} 

Viewpoint { 
position -2 0 0 
orientation 0 1 0 -1.4 
description "Astern" 

} 

Viewpoint { 
position -2 0 2 
orientation 0 10 -.707 
description "Astern Stbd" 

} 

Viewpoint { 
position 0 0 2 
orientation 0 10 0 
description "Stbd Beam" 

} 

Viewpoint { 
position 0 1.5 1.5 
orientation 10 0 -.707 
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description "Above Stbd Beam" 
} 

Viewpoint { 
position 2 2 2 
orientation -.6786 .6786 -.2811 1.0961 
description "Above Stbd Bow" 

} 

Viewpoint { 
position 2 2 0 
orientation -.3574 .8629 .3574 1.7178 
description "Above Bow" 

} 

Viewpoint { 
position 2 2-2 
orientation -.3780 .9125 .1566 2.4189 
description "Above Port Bow" 

} 

Viewpoint { 
position 0 2-2 
orientation 10 0 3.9270 
description "Above Port Beam" 

} 

Viewpoint { 
position -2 2 -2 
orientation -.1566 .9125 .3780 3.8643 
description "Above Astern Port" 

} 

Viewpoint { 
position -2 2 0 
orientation  .3574 .8629 .3574 4.5654 
description "Above Stern" 

} 

Viewpoint { 
position -1.5 0 0 
orientation 0 1 0 -1.4 
description "Close Astern" 

} 

Viewpoint { 
position -2 0 1 
orientation 0 10 -.707 
description "Close Astern Stbd" 

} 

Viewpoint { 
position -1.11 0 .5 
orientation 0 10 0 
description "Close Stbd Stern" 

} 

Viewpoint { 
position -1.11 0 2 
orientation 0 10 0 
description "Stbd Stern" 

} 

Viewpoint { 
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position 0 -1.5 1.5 
orientation 1 0 0 .707 
description "Below Stbd Beam" 

Navigationinfo { 
type [ "EXAMINE" "ALL" ] 

Group { 
children [ 

# DEF AUV 

# Fwd Top Plane 
Transform{ 

translation .6223 
childrenf 

.13335 0 

#A Plane Shape 
DEF A_Plane Shape{ 

appearance Appearance{ 
material Material {diffuseColor 

} #end Appearance 
geometry IndexedFaceSet { 

coord Coordinate{ 

.3 .2 0} 

point[ .0635,  0, -.0127, #0 
.0381,  .1778, -.0127, #1 

-.0381,  .1778, -.0127, #2 
-.0889,  0, -.0127, #3 

.0635,  0, .0127, #4 

.0381,  .1778, .0127, #5 
-.0381,  .1778, .0127, #6 
-.0889,  0, .0127 #7 

] tend Points 
} #end Coordinates 

coordIndex[ 0, 3, 2, 1, -1, 
4, 5, 6, 7, -1, 
0, 1, 5, 4, -1, 
1, 2, 6, 5, -1, 
2, 3, 7, 6, -1, 
0, 3, 7, 4, -1 

] #end coordlndex 
creaseAngle 3.14159 

} #end IndexedFaceSet 
} #end Shape 

] tend Transform children 
#end Transform 

# Aft Top Plane 
Transform{ 

translation -.7747 .13335 0 
children[ 
USE A_Plane 

]# end Transform children 
}#end Transform 

#Fwd Bottom Plane 
Transform{ 

rotation 10 0 3.14159267 
translation .6223 -.13335 0 
children[ 

USE A_Plane 
]#end Transform children 

}#end Transform 
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#Aft Bottom Plane 
Transform{ 

rotation 10 0 3.14159267 
translation -.11 Al   -.13335 0 
children! 

USE A_Plane 
]#end Transform children 

}#end Transform 

#Stbd Fwd Plane 
Transform{ 

rotation 10 0 1.5708 
translation .6223 0 .20955 
children! 
USE A_Plane 

]#end Transform children 
}#end Transform 

#Stbd Aft Plane 
Transform{ 

rotation 10 0 1.5708 
translation -.7747 0 .20955 
children! 

USE A_Plane 
]#end Transform children 

}#end Transform 

#Port Fwd Plane 
Transform{ 

rotation 10 0 -1.5708 
translation .6223 0 -.20955 
childrenf 

USE A_Plane 
]#end Transform children 

}#end Transform 

#Port Aft Plane 
Transform{ 

rotation 10 0 -1.5708 
translation -.7747 0 -.20955 
children! 
USE A_Plane 

]#end Transform children 
}#end Transform 

#Fwd Vert Thruster 
Transform{ 

translation .3302 0 0 
children! 

Shape{ 
appearance Appearance{ 
material Material {diffuseColor .2 .2 .2} 

geometry Cylinder {height .29 radius .0635} # {height .2737 radius .0635} 
}#end Shape 

]#end Children 
}#end Transform 

#Aft Vert Thruster 
Transform{ 

translation -.4953 0 0 
children! 

Shape{ 
appearance Appearance{ 
material Material {diffuseColor .2 .2 .2} 
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} 
geometry Cylinder {height .29 radius .0635} # {height .2737 radius .0635} 

}#end Shape 
]#end Children 

}#end Transform 

#Fwd Horiz Thruster 
Transform{ 

rotation 10 0 1.5708 
translation .4699 0 0 
children! 

Shape{ 
appearance Appearance{ 
material Material {diffuseColor .2 .2 .2} 

} 
geometry Cylinder {height .44 radius .0635} # {height .4231 radius .0635} 

}#end Shape 
]#end Children 

}#end Transform 

#Aft Horiz Thruster 
Transform{ 

rotation 10 0 1.5708 
translation -.6223 0 0 
children[ 

Shape{ 
appearance Appearance{ 
material Material {diffuseColor .2 

} 
geometry Cylinder {height .44 radius 

} #end Shape 
] #end Children 

} #end Transform 

.2} 

.0635} # {height .4231 radius .0635} 

#Hull 
Group{ 

children! 

#Bow Cowling 
Shape{ 

appearance Appearance{ 
material Material {diffuseColor 

} #end Appearance 
0 0 .8} 

geometry IndexedFaceSet { 
coord Coordinate{ 
point[ .6985, .13335, 

.6985, .13335, 

.6985, -.13335, 

.6985, -.13335, 

-.20955, #0 Start of Bow Cowling 
.20955, #1 
.20955, #2 
-.20955, #3 

1 05, .085, 0, #4 
1 05, 0, 1143, #5 
1 05, -.085, 0, #6 
1 05, 0, 1143, #7 

1 05, .04572, -.098985, #8 
1 05, .079188 -.05715, #9 
1 05, .079188 .05715, #10 
1 05, .04572, .098985, #11 

1 05, -.04572, .098985, #12 
1 05, -.079188 .05715, #13 
1 05, -.079188 -.05715, #14 
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1.05, -.04572, .098985,  #15 

1.1, .04064, .02032, #16 
1.1, .02032, .06096, #17 
1.1, -.02032, .06096, #18 
1.1, -.04064, .02032, #19 
1.1, -.04064, -.02032, #20 
1.1, -.02032, -.06096, #21 
1.1, .02032, -.06096, #22 
1.1, .04064, -.02032, #23 

1.11,  0, 0, #24 

-.6985, .13335, .20955, #25 Start of Stern Cowling 
-.6985, .13335, -.20955, #26 
-.6985, -.13335, -.20955, #27 
-.6985, -.13335, .20955, #28 
-1.1303 0, .20955, #29 
-1.1303 0, -.20955, #30 

.6985, .13335, .0635, #31 Start of Rudder Post 

.8509, .13335, .0635, #32 

.8509, .13335, -.0635, #33 

.6985, .13335, -.0635, #34 

.6985, -.13335, .0635, #35 

.8509, -.13335, .0635, #36 

.8509, -.13335, -.0635, #37 

.6985, -.13335, -.0635, #38 

] #end Points 
} #end Coordinates 

coordIndex[ 0, 26, 34, 33, 32, 31, 25, 1, -1, #Hull 
1, 25, 29, 28, 2, -1, 
2, 28, 35, 36, 37, 38, 27, 3, -1, 
0, 3,  27, 30, 26, -1, 

0, 4, 1, -1, 
0, 1, 4, -1, 
1, 5, 2, -1, 
1, 2, 5, -1, 
2, 6, 3, -1, 
2, 3, 6, -1, 
3, 7, 0, -1, 
3, 0, 7, -1, 

#Bow Cowling 

7, 0, 8, -1, 
7, 8, 0, -1, 
8, 0, 9, -1, 
8, 9, 0, -1, 
9, 0, 4, -1, 
9, 4, 0, -1, 

4, 1, 10, -1, 
4, 10, 1, -1, 

10, 1, 11, -1, 
10, 11, 1, -1, 
11, 1, 5, -1, 
11, 5, 1, -1, 

5, 2, 12, -1, 
5, 12, 2, -1, 

12, 2, 13, -1, 
12, 13, 2, -1, 
13, 2, 6, -1, 
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13,  6,  2, -1, 

6 3, 14, -1, 
6 14,  3, -1, 

14 3, 15, -1, 
14 15,  3, -1, 
15 3,  7, -1 
15 7,  3, -1, 

4, 10, 16, -1, 
10 11, 16, -1, 
11 5, 17, -1, 
5, 12, 18, -1, 
12 13, 19, -1, 
13 6, 19, -1, 
6, 14, 20, -1, 
14 15, 20, -1, 
15 7, 21, -1, 
7, 8, 22, - 1, 
8, 9, 23, - 1, 
9, 4, 23, - 1, 

4, 16, 23, -1, 
11 17, 16, -1, 
5, 18, 17, -1, 
12 19, 18, -1, 
6, 20, 19, -1, 
20 15, 21, -1, 
21 7, 22, -1, 
22 8, 23, -1, 

23, 16, 24, 
16, 17, 24, 
17, 18, 24, 
18, 19, 24, 
19, 20, 24, 
20, 21, 24, 
21, 22, 24, 
22, 23, 24, 

-1, 
-1, 
-1, 
-1, 
-1, 
-1, 
-1, 
-1, 

26, 27, 30, -1, 
25, 26, 30, 29, -1, 
25, 29, 28, -1, 
27, 28, 29, 30, -1, 

#Start of Stern Cowling 

31, 32, 36, 35, 
32, 33, 37, 36, 
34, 38, 37, 33, 

-1, #Start of Rudder Post 
-1, 
-1, 

] #end coordlndex 
creaseAngle 3.14159 

} #end IndexedFaceSet 
} #end Shape 

] #end Hull Group Children 
} #end Hull Group 

#The Stbd screw 
Transform{ 

translation -1.1557 0 .09525 
children! 

Group{ # DEF Stbd_Screw 
children[ 
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DEF Stbd_Blade Group{ 
children[ 
Transform{ 

rotation 0 1 0 -.39 
children[ 

Shape{ 
appearance Appearance{ 
material Material {diffuseColor 

} #end Appearance 
.226 .197 0} 

geometry IndexedFaceSet { 
coord Coordinate{ 
point[ 0, 0, -.00508, #0 

0, .02540, -.02032, #1 
0, .04572, -.01524, #2 
0, .05080, -.00508, #3 
0, .05080, .00508, #4 
0, .04572, .01524, #5 
0, .02540, .02032, #6 
o. 0, .00508 #7 

] #end Points 
} #end Coordinates 

coordIndex[ 0, 1, 2, 3, 4, 5, 6, 7, 
0, 7, 6, 5, 4, 3, 2, 1, 

] #end coordlndex 
} #end IndexedFaceSet 

} #end A_Blade Shape 
]tend transform children 

} #end transform 
] #end group children 

} tend A_Blade Group 

Transform{ 
rotation 10 0 1.5708 
children[ USE Stbd_Blade ] 

} tend Transform 

Transform{ 
rotation 10 0 3.14159267 
children[ USE Stbd_Blade ] 

} #end Transform 

Transform{ 
rotation 10 0 -1.5708 
children[ USE Stbd_Blade ] 

} #end Transform 

-1, 
-1 

#The shaft 
Transform{ 

rotation 0 0 1 1.5708 
translation .0281 0 0 
children[ 

Shape { 
appearance Appearance{ 
material Material {diffuseColor  .226 .197 0} 

} #end Appearance 
geometry Cylinder {radius .008 height .0762} 

} #end Shape 
] #end children 

} #end Transform 

#The shaft end cap 
Transform{ 

rotation 0 0 1 1.5708 
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translation -.015 0 0 
children! 

Shape { 
appearance Appearance{ 
material Material {diffuseColor  .226 .197 0} 

} #end Appearance 
geometry Cone {bottomRadius .008 height .01} 

} #end Shape 
] #end children 

} #end Transform 
] #end Screw Group Children 

} #end Screw Group 
] #end Transform Children 

} #end Transform 

#The Port screw 
Transform{ 

translation -1.1557 0 -.09525 
children[ 

Group{ # DEF Port_Screw 
children[ 

DEF Port_Blade Group{ 
children[ 
Transform{ 

rotation 0 10 .39 
children[ 

Shape{ 
appearance Appearance{ 
material Material {diffuseColor  .226 .197 0} 

} #end Appearance 

geometry IndexedFaceSet { 
coord Coordinate{ 
point[ 0, 0, -.00508, #0 

0, .02540, -.02032, #1 
0, .04572, -.01524, #2 
0, .05080, -.00508, #3 
0, .05080, .00508, #4 
0, .04572, .01524, #5 
0, .02540, .02032, #6 
0, 0, .00508 #7 

] #end Points 
} #end Coordinates 

coordlndext 0, 1, 2, 3, 4, 5, 6, 7, -1, 
0, 7, 6, 5, 4, 3, 2, 1, -1 

] #end coordlndex 
} #end IndexedFaceSet 

} #end A_Blade Shape 
]#end transform children 

} #end transform 
] #end group children 

} #end A_Blade Group 

Transform{ 
rotation 10 0 1.5708 
children! USE Port_Blade ] 

} #end Transform 

Transform{ 
rotation 10 0 3.14159267 
children[ USE Port_Blade ] 

} #end Transform 
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Trans form { 
rotation 10 0 -1.5708 
children[ USE Port_Blade ] 

} #end Transform 

#The shaft 
Transform{ 

rotation 0 0 1 1.5708 
translation .0281 0 0 
children[ 

Shape { 
appearance Appearance{ 
material Material {diffuseColor  .226 .197 0} 

} #end Appearance 
geometry Cylinder {radius .008 height .0762} 

} #end Shape 
] #end children 

} #end Transform 

#The shaft end cap 
Transform{ 

rotation 0 0 1 1.5708 
translation -.015 0 0 
childrenf 

Shape { 
appearance Appearance{ 
material Material {diffuseColor  .226 .197 0} 

} #end Appearance 
geometry Cone {bottomRadius .008 height .01} 

} #end Shape 
] tend children 

} #end Transform 
] #end Screw Group Children 

} #end Screw Group 
] tend Transform Children 

} tend Transform 

]tend AUV Group children 

} tend AUV Group 

tend auv.wrl 
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APPENDIX C. EXPERIMENTAL SCRIPTS AND RESULT DATA 

1. Mission.script.SeaStateTest 

# your mission is 
# Sea State Test 

# mission.script.SeaStateTest 

"   i i i i 

# initial position 
position   -180 50  2 

# drive straight into seas 
course 000 
depth 2 
rpm   350 

#run test for 5 minutes 
wait   300 

#done, stop 
rpm 0 
wait 60 

# test complete 
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2.      Mission.script.FlowFieldTestLoop 
# your mission is 
# flow field test loop 

# mission.script.FlowFieldTestLoop 

ft i i i i 

# shift DS30 Precision Doppler Sonar mode 
# to track speed through water, not speed over ground 

# i i i i 

# hull is at y distance of 83 feet 

»   i i i i 

# initial position inside hull 
position   117 88  43 
orientation   0  0 335 

standoff-distance 2.0 

# launch from lower port torpedo tube 
hover 122 85.5 43 335 
wait   10 

# drive out of tube 
rpm 700 
wait  20 

# go to surface and turn south 
depth   2 
course 180 
wait   90 

# operate at surface first, then go deep 
rpm   0 
wait  60 

thrusters-on 
rpm 700 
depth 70 
wait  60 

# drive to aft end of submarine 
standoff-distance 4.0 
hover -130 75 33 000 
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# steer collision avoidance sonar 
# to track the submarine hull 
SONAR_725 090 30 1 

# wider scan for tracking sonar 
SCAN-WIDTH 45 

wait 10 
hover-off 

# take position just aft of the pump discharge 
rpm   400 
course 000 
depth 33 
wait    60 

# stabilize after pump discharge 
waypoint -25 76 33 

# drive through pump suction 
course 000 
rpm 400 
depth 33 
wait     5 

# stabilize after pump suction 
waypoint 90 80 33 

# dock with torpedo upper port tube, 
# then hover with nose in tube 

standoff-distance 0.5 

course  025 

hover    108.5 84 33 

# move in 

hover    117   88 33 

# stabilize for next iteration 
wait 10 
hover-off 

# docking complete 
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3.   SEA STATE 1 SIMULATION DATA 

Wed Feb 25 09:53:52 1998 
0.3 

NPS AUV telemetry 17 

150     200 
time t (seconds) 

250 300 350 
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Wed Feb 25 09:53:34 1998 NPS AUV telemetry 8 
0.4 

0.3 

0.2 

0.1 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

T T" T T 

t. vs jtheta (elevation angle)   [degj] 
t vs ;theta_dot   (elevation irate)      [degi/sec] 

50 100       150       200 
time t (seconds) 

250 300 350 
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4.       SEA STATE 2 SIMULATION DATA 

Wed Feb 25 10:14:57 1998 
1.5 

NPS AUV telemetry 17 

0.5 

-0.5 

-1.5 
50 100 150       200 

time t (seconds) 
250 300 350 
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Wed Feb 25 10:14:41 1998 
1.5 

1 - 

0.5 

-0.5 

-1 -■■ 

-1.5 

NPS AUV telemetry 
 1   1 1 !  

t  vs itheta (elevation angle)    [degp -&  
t vs itheta_dot   {elevation irate)      [deg;/sec]   H— 

50 100       150       200 
time t (seconds) 

250 300 350 
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5.      SEA STATE 3 SIMULATION DATA 

Wed Feb 25 10:10:25 1998 
2.5 

NPS AUV telemetry 17 

1.5 - 

0.5 

-0.5 

-1.5 

50 100 150       200 
time t (seconds) 

250 300 350 
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Wed Feb 25 10:10:10 1998 NPS AUV telemetry  8 
2.5 ~l 1 ! ! 1  

\ t  vs jtheta (elevation angle)    [degj] ••■©-  
..t..ys.jtheta_dot.....(elevation.irate). [degi/sec].. .-+r.: 

150 200 
time  t   (seconds) 

350 
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6.        SEA STATE 4 SIMULATION DATA 

Wed Feb 25 10:05:17 1998 
6 

NPS AUV telemetry 17 

50 100 150       200 
time t (seconds) 

250 300 350 
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Wed Feb 25 10:05:00 19 
10 

NPS AUV telemetry 8 

150       200 
time t (seconds) 

350 
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7.       SEA STATE 5 SIMULATION DATA 

Wed Feb 25 09:59:02 199 
40 

50 

NPS AUV telemetry 17 

100       150  .    200 
time t (seconds) 

250 300 350 
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8.      X VERSUS Y FOR NO-FLOW SIMULATION 
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9.      X VERSUS Y FOR NORMAL FLOW SIMULATION 
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10.     X VERSUS Y FOR EXTREME FLOW RUN 

Wed Mar  4 09:42:18 1998 
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APPENDIX D. FLOW GENERATION CODE 

1111111111111111111111111111111111111111111111111111111111111111111111111111111 
i* 
Program: FlowFieldGenerator.C 

Description:      This program creates the data required for a complex flow field 
associated with a submarine driving through the water. It uses 
Flat Plate Fluid Flow theory to create a series of files which 
contain the data used by the Phoenix AUVs Virtual environment. 

This program is based upon a program which was written in fortran 
called  ITBL (Incompressible Turbulent Boundary Layer) from a 
mechanical Engineering text. The book was called Boundary Layer 

Analysis, by Joseph A. Schetz. 

Revised: 

System: 

Compiler: 

Compilation: 

Author: 

Thesis: 

Advisors: 

References: 

Notes: 

26 January 98 

Irix 5.3 

ANSI C++ 

irix> make FlowFieldGenerator.o 
irix> CC FlowFieldGenerator.C -lm -c -g +w 

-c == Produce binaries only, suppressing the link phase'. 
+w == Warn about all questionable constructs. 

Kevin Byrne 

Byrne, Kevin M-,   Real-Time Modeling of Cross-Body 
Flow for Torpedo Tube Recovery of the Phoenix Autonomous 
Underwater Vehicle, Masters Thesis, Naval Postgraduate 
School, Monterey California, March 1998. 

Dr. Don Brutzman, Dr. Bob McGhee 

Schetz, Joseph A., „Boundary Layer Analysis_, 
Prentice Hall, Englewood Cliffs, NJ, 1992. 

// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 

2-d Boundary Layer Computation,  Incompressible, 
Turbulent, 1st Order,  Implicit 

Mixing-length or Eddy-viscosity Model or Tke Model. 

Equations Are Dimensionless Using Freestream Velocity, 
Uinf, Viscosity, Muinf, and Density, Rhoinf, and a 
Reference Length, L; X/l, Y/l, U/uinf, Also 
Re = Rhoinf*uinf*l/muinf 
Pick L = 1.0. 

Other Variables: 
Rkap, Kappa in the Mean Flow Turbulence Models 
Ypa, Y Sub A+ 
Del, Starting Boundary Layer Thickness 
Duedx, Derivative of Edge Velocity in the X Direction 
Red, Reynolds Number Based on Delta 
Usue, Ustar/uedge 
A,b,c, Splitting up the Boundary Layer Equations 
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0e6. 
//     Sample Problem of a Flat Plate with Uinf = 10.0. Start at 
//     X = 5.0. Goto X = 6.0. Take Nu(=muinf/rhoinf) = 1.0e-5. Rex=5. 

//     Use Simple Integral Solution to Get Initial Values. 
//     Delta = 0.0856. Cf = 0.002665. Other Flows Can Be Set by User. 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIH 

♦include <iostream.h> 
♦include <iomanip.h> 
♦include <fstream.h> 
♦include <math.h> 

♦define TRUE  1 
♦define FALSE 0 

struct FlowGridElements 
double direction; 
double x_magnitude; 
double y_magnitude; 
double z_magnitude; 

}; 

//direction relative to sub heading 
//The magnitudes are dimensionless 
//forces in the submarine reference frame 

const int FLOWFIELDLENGTH = 721;  //2 
const int FLOWFIELDWIDTH  = 61;   //4 

lenght of sub om .5 ft inc 
the number of cross_sections on AUV 

//These grids are used to pass the initial flow profile from the flat 
//Plate model to the tube level model. The tube level model refines 
//these arraysin the areas of interest. 
FlowGridElements globallktgrid[FLOWFIELDLENGTH][FLOWFIELDWIDTH] = {0} 
FlowGridElements global2ktgrid[FLOWFIELDLENGTH][FLOWFIELDWIDTH] = {0} 
FlowGridElements global3ktgrid[FLOWFIELDLENGTH][FLOWFIELDWIDTH] = {0} 

//Local Constants 
const double RKAP = 0.41; 
const double YPA = 9.7; 

II- 
void eddy( int NNX, int MMAX, int MEST, const double RE, double DY, 

double U0[],  double UE[], double T[], double CF[]) 

double 
double 
double 
double 

RMUT =0.0 
Y = 0.0 
YP =0.0 
DELST =0.0 

for (int ie = 2; ie <= MEST; ie++)  { 
DELST = DELST + DY*(1.0-0.5*(U0[ie-1]+U0[ie])/UE[NNX]); 

//   CLAUSER EDDY VISCOSITY MODEL 
RMUT = 0.018*RE*UE[NNX]*DELST; 

for (int ig = 1; ig <= MMAX; ig++)  { 

Y  = (ig-1) * DY; 
YP = Y*UE[NNX]*RE*sqrt(0.5*CF[NNX-l]); 

//REICHART MODEL FOR COMPLETE INNER REGION 
T[ig] = RKAP*(YP-YPA*tanh(YP/YPA)) ; 
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if (T[ig] > RMUT)  { 
T[ig] = RMUT; 

} 
} 

return; 

}   //end of function eddy 

//  
void TRID ( int MM, double A[], double B[], double C[], double R[], double S[]) { 

double GAM[550]; 
double RP[550]; 
double DENO; 

// THOMAS ALGORITHM 
GAM[1] = C[l] / B[l]; 
RP[1] = Rtl] / B[l]; 

for (int ih = 2; ih <= MM; ih++)  { 

DENO = B[ih] - A[ih] * GAM[ih-l]; 
GAM[ih] = Ctih] / DENO; 
RP[ih] = (R[ih]-A[ih]*RP[ih-l]) / DENO; 

} 

S[MM]   =  RP[MM]; 

for (int ii = 1; ii <= MM-1; ii++)  { 
S[MM-ii] = RP[MM-ii]-GAM[MM-ii]*S[MM-ii+l]; 

} 

return; 

}   //end of function TRID 

// _ __ 

void flatPlateFlowFieldGenerator ( void ) { 

// YOU MUST GIVE INITIAL X (XI), FINAL X (XF), (CNU), (UNINF), 
// (NMAX), (MMAX) AND (DY) 
// PICK MMAX BASED ON INITIAL BOUNDARY LAYER THICKNESS AND 
// NUMBER OF POINTS ACROSS THE LAYER.  USE AT LEAST 400 ACROSS 
// DELTA.  ADD AT LEAST 100 POINTS ABOVE DELTA. 
// 
// PICK NMAX BASED ON LENGTH OF REGION AND DX DESIRED.  DX 
// CAN BE OF THE ORDER OF INITIAL DELTA/FIVE. TAKE L = 1.0. 

//Constant Variables 
const int ARRAY_SIZE = 550; 
const double   XI = 0.0; //Initial X position where flow hits plate 
const double   CNU = 0.000001; 

//  

//Variables I needed to add for iteration down sub Hull 

int current_distance    = 0; 
int index_difference      = 0; 
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//Length in meters = 360 ft, truly 109.7m double submarine_length_meters = 111; 
//double submarine_speed = 1.0; 

struct flowRecord { 
double x_magnitude 
double y_magnitude 
double z_magnitude 
double direction; 

}; 

flowRecord nontubelevelgrid[FLOWFIELDLENGTH][FLOWFIELDWIDTH]; 

//Array declararations 
double U[ARRAY_SIZE]; 
double U0[ARRAY_SIZE]; 
double V[ARRAY_SIZE]; 
double V0[ARRAY_SIZE]; 
double CF[150] ; 
double A[ARRAY_SIZE] 
double B[ARRAY_SIZE] 
double C[ARRAY_SIZE] 
double R[ARRAY_SIZE]. 
double TKEO[ARRAY_SIZE]; 
double TMU[ARRAY_SIZE]; 
double UE[150]; 
double DUEDX[150]; 
double Y[ARRAY_SIZE]; 

//Varibles Required For Fluid Caluations 
int 
int. 
ir -.-. 
inc 
int 
int 
int 

//distance from hull feet 

//MMAX originally was 525, NMAX originally was 101 

//This is the M index for the initial Delta 

double 
double 

value.035) 
double 
double 
double 
double 
double 

discharge 
double 
double 
double 

double 
(ft) 

double 
(ft) 

MMAX  = 60; 
NMAX  = 15; 
MEST  = 401; 
FM1   = MEST-1; 
NMAXP = NMAX; 
MMAXP = MEST+100; 
NNX; 

XF = 0.0; 
DY = 0. 02/MMAX; 

DX; 
DENO; 
DEL = 0.00015; 
Y0D; 
pump_outlet_j et_f actor ,- 

pump_inlet_jet_factor;      //Holds value for pump force reductionsw suction 
pump_outlet_3et_speed = 2.5; //Holds value for pump force (knots) 
pump_inlet_jet_speed = 1.0; //Holds value for pump force (knots) 

pumpSuctionPosition_ft   = 180.5; //The position along hte hull of suction 

pumPDischargePosition_ft = 245.5; //The position along hte hull of discharge 

//The position at which the profile is generated 
// step distance away from hull per calcualtion(last 

// distance from the start of plate 

//Holds value for pump force reduction sw 

double   suctionBegin_m 
suction forces(m) 

double   suctionEnd_m 
forces(m) 

double   dischargeBegin_m 
discharge forces(m) 

double   dischargeEnd_m 
discharge forces(m) 

= (pumpSuctionPosition_ft - 6.5) * 0.3048; //Begin of 

= (pumpSuctionPosition_ft + 6.5) * 0.3048; //End of suction 

= (pumpDischargePosition_ft - 6.5) * 0.3048; //Begin of 

= (pumpDischargePosition_ft +6.5) * 0.3048; //End of 
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//  
//Output streams to hold the generated flow fields for later usage 
// flatplateflowfieldlkt.data - Holds the entire flatplate model flow field 
// for a submarine speed of 1 kt. 
// flatplateflowfield2kt.data - Holds the entire flatplate model flow field 
// for a submarine speed of 2 kt. 
// flatplateflowfield3kt.data - Holds the entire flatplate model flow field 
// for a submarine speed of 3 kt. 
// 
// These others are just for data verification. 
// flatprofile.data  - Holds flat plate data for sub profile 
// flatslice50.data  - Holds flat plate data for slice at 50 ft 
// flatslicelOO.data - Holds flat plate data for slice at 100 ft 
// flatslicel50.data - Holds flat plate data for slice at 150 ft 
// flatslice200.data - Holds flat plate data for slice at 200 ft 
// flatslice250.data - Holds flat plate data for slice at 250 ft 

ofstream platelktOutput ("flatplateflowfieldlkt.data", ios::out); 
ofstream plate2ktOutput, ("flatplateflowfield2kt.data", ios::out); 
ofstream plate3ktOutput ("flatplateflowfield3kt.data", ios::out); 
ofstream plateProfileOutput ("flatprofile.data", ios::out); 
ofstream plateSlice50Output ("flatslice50.data", ios::out); 
ofstream plateSlicelOOOutput("flatslicelOO.data", ios::out) 
ofstream plateSlicel50Output("flatslicel50.data", ios::out) 
ofstream plateSlice200Output("flatslice200.data", ios::out), 
ofstream plateSlice250Output("flatslice250.data", ios::out) 

for (int submarine_speed = 1; submarine_speed < 4; submarine_speed++) { 

int last_distance_filled = 0; 
double   UINF = (double)submarine_speed; //This is the flow strength in open water 
//This  declared here due to dependence on other variables 
double   RE = UINF * submarine_length_meters / CNU; 

// _  
//Initialize flow field to zero prior to each speed iteration 
for ( int row = 0; row < FLOWFIELDLENGTH; row++) { 

for (int col = 1; col < FLOWFIELDWIDTH; col++) { 

nontubelevelgridtrow][col].x_magnitude = 0.0; 
nontubelevelgridtrow][col].y_magnitude = 0.0; 
nontubelevelgridtrow][col].z_magnitude = 0.0; 
nontubelevelgridtrow][col].direction = 180.0; 

//  

//This is the main loop. It generates the Flow field from bow to stern 
//in 1 meter increments. Each profile starts from the hull and ' 
//goes outward until flow force = Uinf (-30 ft) 
for (int generationloop = 1; generationloop < submarine_length_meters  ; 

generationloop++) { 

//Flag for file output 
// firstEntry = 1; 
//This increments XF by 1 m each time. The loop will run from bow to stern 
XF = (double)generationloop; 
DX = (XF-XI) / (NMAX-1); 

//initialize UE and DUEDX arrays they are only 150 elements large 
for ( int iw = 0; iw <= NMAX; iw++) { 
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UE[iw]    = 1.0; 
DUEDXfiw] = 0.0; 

} 

//additional variable which depend on nitialized arrays 
CF[1] = 0.001; 
double USUE = sqrt(CF[1]/2 . 0) ; 
double RED = RE * DEL * USUE * UE[1]; 

//initialize other arrays, these are 550 elements large 
for ( int ix = 1; ix <= MMAX; ix++) { 

U[ix] = UE[1]; 
U0[ix] = UE[1]; 
V[ix] = 0.0 
V0[ix] = 0.0 
TKEO[ix] = 0.0 
TMU[ix] = 0.0 

//       NO SLIP CONDITION 
U[l] = 0.0; 
U0[1] = 0.0; 

//  

//The initial profiles of U and V can be changed by the user. 
//MEST is the M index for the initial Delta. 
//Assume a Coles Wake Law Initial Velocity Profile 
//  

for (int iy = 2; iy <= MEST; iy++) { 

Y0D = (double)(iy-1) / (double)FM1; 
U0[iy] = USUE*UE[1]* 

(1.0/RKAP*log(Y0D*RED) + 4.90 + 0.51/RKAP 
* 2.0 * pow((sin(Y0D*1.5708) ) ,2)); 

V0[iy] = 0.0; 
} 

//By this point all initialization is done, U0 and V0 are initial U+V profiles 
int  done_200 = FALSE; 
int iz = 2; 

while (( iz <= NMAX ) && (done_200 == FALSE)) { 

NNX = iz; 
U0[MMAX] = UE[iz]; 
V0[MMAX] =0.0; 

eddy(NNX, MMAX, MEST, RE, DY, U0, UE,  TMU, CF) ; 

B[l] = 1.0; 
C[l] = 0.0; 
R[l] = 0.0; 
A[MMAX] = 0.0; 
BtMMAX] = 1.0; 
C[MMAX] = 0.0; 
R[MMAX] = UE[iz]; 
DENO = RE*DY*DY; 

for (int ia = 2; ia <= MMAX-1; ia++) { 

A[ia] = -0.5*V0[ia]/DY-(1.0+TMU[ia-l])/DENO; 
B[ia] = U0[ia]/DX+(2.0+TMU[ia-l]+TMU[ia])/DENO; 
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C[ia]   =   0.5*V0[ia]/DY-(1.0+TMU[ia])/DENO; 
R[ia]   =  UE[iz]*DUEDX[iz]+U0[ia]*U0[ia]/DX; 

} 

TRID(MMAX,   A,   B,   C,   R,   U); 

for (int ib = 2; ib <= MMAX - 1; ib++) { 
Vtib] = V[ib-l]-(0.5*DY/DX)*(U[ib]-U0[ib]+U[ib-l]-U0[ib-l]); 

} 

int done = FALSE; 
int ic = MEST - 10; 

while ((ic <= MMAX) && (done == FALSE))  { 
if (U[ic] > 0.99*UE[iz]) { 

MEST = ic; 
MMAXP = MEST+100; 
done = TRUE; 

} 
ic++; 

} 

//This steps in the X-direction from front of plate to current position 
for (int id = 2; id <= MMAX; id++)  { 

U0[id] = U[id]; 
V0[id] = V[id]; 

} 

CF[iz] = (4.0*U0[2]-U0[3])/(pow(UE[iz],2)*DY*RE); 

//Check if near Seperation, if so this profile is done 
if (CF[iz] < 0.0001) { 

NMAXP = iz; 
done_200 = TRUE; 

} 
iz++; 

} //end of for 200 loop 

if (MMAXP > MMAX) { 
MMAXP = MMAX; 

} 

//  

//This section puts data in seperate files for later use. 
//The data is formatted in the following order: 
//   X-dir flow component Y-dir Z-dir vector direction 
//All values are unitless. This allows scaling during usage. 
//  

//Calculate the number of feet down the hull we are 
current_distahce = (int)(generationloop/.3048) * 2; 

//Check to ensure we have a good ft increment on hull 
if (current_distance > 720 ) { 

cout « " Distance along hull exceeded 360 ft, reset to 360 ft (720)" « endl; 
current_distance = 720; 

} 

if (current_distance < 0 ) { 
cout « " Distance along hull below 0 ft, reset to 1" « endl; 
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current_distance = 0; 
} 

//Calculate the number of rows to be filled.This is needed because the 
//dynamics model needs a flow field with 0.5 ft increments, and this 
//generates a field of 1 meter increments. We interpolate to fill 
//in the missing data 
index_difference = current_distance - last_distance_filled; 

//Output routine to put Values in proper arrays and files 
//A loop is used to access each U value for this position on 
//Hull. The generationloop index represents the distance along 
// the hull in meters 
for (int ij = 0; ij < MMAXP; ij++)  { 

//Distance from the hull in feet 
Y[ij] =(ij-l)*DY* submarine_length_meters / 0.3048 ; 

// _  

//This section does array output 
//output of flow field into flowfield arrays 
//We must fill all .5 ft incremented array rows between 
//current_distance and last_distance_filled 

int pass = 1; 

for (int arrayindex = last_distance_filled + 1; arrayindex < current distance- 
arrayindex++) { -   ««-<=, 

//   

// The output data is given in knots based on submarine speed. Dynamics 
converts it to ft/sec 

// To convert knots to ft/sec kts*2000*3/60/60= 1.6667 
,_. n   ,_ //In order to get this force into true x, y, z components it is necessary to 

multiply the components 

//by a factor which relates them to the sub's refernce frame. Since for the 
tiat plate model 

//! assume x and z components are zero, only Y is adjusted . For the tube 
level profile when 

//fully integrated each component will need to be adjusted. 

//reset pump jet force to one 
pump_outlet_jet_factor = 1.0; 
pump_inlet_jet_factor = -1.0; 

for (int column = 0; column < FLOWFIELDWIDTH; column++) { 

nontubelevelgrid[arrayindex][column].x_magnitude = 0.0; 
nontubelevelgrid[arrayindex][column].y magnitude = - Ufcolumn] * 

submarine_speed; _ 

nontubelevelgrid[arrayindex][column].z_magnitude = 0.0; 
nontubelevelgrid[arrayindex][column].direction = 180.0; 

full 
//This section adds a pump inlet 180 ft back on the hull. It starts out at 

sucked in at 2.5'
/ktsCe "^ diminishes to ° at 20 ft out frora the hull. It assumes water is 

if ((generationloop > suctionBegin_m) && (generationloop < suctionEnd m)) { 
nontubelevelgrid[arrayindex][column].x_magnitude = pump_inlet_jet_factor 

* pump_inlet_jet_speed; 

if (pump_inlet_jet_factor < -0.2) { 
pump_inlet_jet_factor = pump_inlet_jet_factor + 0.025; 
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} 
else { 

pump_inlet_jet_factor = 0.0; 
} 

//This section adds a pump discharge jet 246 ft back on the hull. It starts 
out at full 

//force and diminishes to 0 at 20 ft out from the hull.It assumes water is 
discharged in at 2.5 kts 

else if ((generationloop > dischargeBegin_m) && (generationloop < 
dischargeEnd_m)) { 

nontubelevelgrid[arrayindex][column].x_magnitude = pump_outlet_jet_factor 
* pump_outlet_jet_speed; 

if (pump_outlet_jet_factor > 0.2) { 
pump_outlet_jet_factor = pump_outlet_jet_factor - 0.025; 

} 
else { 

pump_outlet_jet_factor = 0.0; 
} 

//Now write these values to the proper file 
switch ((int)submarine_speed) { 

case 1: 
platelktOutput « arrayindex « " " « column « " " 

<< nontubelevelgrid[arrayindex][column].x_magnitude « 
■I H 

« nontubelevelgrid[arrayindex][column].y_magnitude « 
■I H 

« nontubelevelgrid[arrayindex][column].z_magnitude « 
ii  n 

« nontubelevelgrid[arrayindex][column].direction 
« endl; 

//Update the global array 
globallktgrid[arrayindex][column].x_magnitude = 

nontubelevelgrid[arrayindex][column].x_magnitude; 
globallktgrid[arrayindex][column].y_magnitude = 

nontubelevelgrid[arrayindex][column].y_magnitude; 
globallktgrid[arrayindex][column].z_magnitude = 

nontubelevelgrid[arrayindex][column].z_magnitude; 
globallktgrid[arrayindex][column].direction  = 

nontubelevelgrid[arrayindex][column].direction; 
break ,- 

case 2 : 
plate2ktOutput « arrayindex « " " « column « " " 

« nontubelevelgrid[arrayindex][column].x_magnitude « 

« nontubelevelgrid[arrayindex][column].y_magnitude « 
II  it 

« nontubelevelgrid[arrayindex][column].z_magnitude « 
n  II 

« nontubelevelgrid[arrayindex][column].direction 
«  endl; 

//Update  the global array 
global2ktgrid[arrayindex][column].x_magnitude  = 
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nontubelevelgrid[arrayindex][column].x_magnitude; 
global2ktgrid[arrayindex][column].y_magnitude = 

nontubelevelgrid[arrayindex][column].y_magnitude; 
global2ktgrid[arrayindex][column].z_magnitude = 

nontubelevelgrid[arrayindex][column].z_magnitude; 
global2ktgrid[arrayindex][column].direction  = 

nontubelevelgrid[arrayindex][column].direction- 

break; 
case 3: 

plate3kt0utput « arrayindex « " " « column « " " 
« nontubelevelgrid[arrayindex][column].x_magnitude « 

« nontubelevelgrid[arrayindex][column].y_magnitude « 

« nontubelevelgrid[arrayindex][column].z_magnitude « 

« nontubelevelgrid[arrayindex][column].direction 
« endl; 

//Update the global array 
global3ktgrid[arrayindex][column].x_magnitude = 

nontubelevelgrid[arrayindex][column].x_magnitude; 
global3ktgrid[arrayindex][column].y_magnitude = 

nontubelevelgrid[arrayindex][column].y_magnitude; 
global3ktgrid[arrayindex][column].z_magnitude = 

nontubelevelgrid[arrayindex][column].z_magnitude; 
global3ktgrid[arrayindex][column].direction = 

nontubelevelgrid[arrayindex][column].direction; 

break; 
default: 

cerr « "Invalid Submarine Speed" « endl; 
break; 

}  // end switch 
} //end of column loop 
pass += 1; 

} 

//Fill current distance array, and write values to file 
nontubelevelgrid[current_distance][ij].x_magnitude = 0.0; 
nontubelevelgrid[current_distance][ij].y_magnitude = - U[ij] * submarine_speed; 
nontubelevelgrid[current_distance][ij].z_magnitude = 0.0; 
nontubelevelgrid[current_distance][ij].direction = 180.0; 

//This section adds a pump inlet 180 ft back on the hull. It starts out at 

//force and diminishes to 0 at 20 ft out from the hull. It assumes water is 
sucked in at 2.5 kts 

if ((generationloop > suctionBegin_m) && (generationloop < suctionEnd_m)) { 
nontubelevelgrid[current_distance][ij].x_magnitude = 

pump_inlet_jet_factor 

* pump_inlet_jet_speed; 

if (pump_inlet_jet_factor < -0.2) { 
pump_inlet_jet_factor = pump_inlet_jet_factor + 0.025; 

else { 
pump_inlet_jet_factor = 0.0; 

} 
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//This section adds a pump discharge jet 246 ft back on the hull. It starts 
out at full 

//force and diminishes to 0 at 20 ft out from the hull.It assumes water is 
discharged in at 2.5 kts 

else if ((generationloop > dischargeBegin_m) && (generationloop < 
dischargeEnd_m)) { 

nontubelevelgrid[current_distance][ij].x_magnitude = 
pump_outlet_j et_factor 

* pump_outlet_jet_speed; 

if (pump_outlet_jet_factor > 0.2) { 
pump_outlet_jet_factor = pump_outlet_jet_factor - 0.025; 

} 
else { 

pump_outlet_jet_factor = 0.0; 
} 

//Now write these values to the proper file 
switch ((int)submarine_speed) { 

case 1: 
platelktOutput « current_distance « " " « ij « " " 

« nontubelevelgrid[current_distance][ij].x_magnitude « 
« nontubelevelgrid[current_distance][ij].y_magnitude « 
« nontubelevelgrid[current_distance][ij].z_magnitude « 
« nontubelevelgrid[current_distance][ij].direction 
« endl; 

//Update the global array 
globallktgrid[current_distance][ij].x_magnitude = 

nontubelevelgrid[current_distance][ij].x_magnitude; 
globallktgrid[current_distance][ij].y_magnitude = 

nontubelevelgrid[current_distance][ij].y_magnitude; 
globallktgrid[current_distance][ij].z_magnitude = 

nontubelevelgrid[current_distance][ij].z_magnitude; 
globallktgrid[current_distance][ij].direction = 

nontubelevelgrid[current_distance][ij].direction; 

break; 
case 2: 

plate2ktOutput « current_distance << " " « ij << " " 
« nontubelevelgrid[current_distance][ij].x_magnitude « 
« nontubelevelgrid[current_distance][ij].y_magnitude « 
« nontubelevelgrid[current_distance][ij].z_magnitude « 
« nontubelevelgrid[current_distance][ij]-direction 
« endl; 

//Update the global array 
global2ktgrid[current_distance][ij].x_magnitude = 

nontubelevelgrid[current_distance][ij].x_magnitude; 
global2ktgrid[current_distance][ij].y_magnitude = 

nontubelevelgrid[current_distance][ij].y_magnitude; 
global2ktgrid[current_distance][ij].z_magnitude = 

nontubelevelgrid[current_distance][ij].z_magnitude; 
global2ktgrid[current_distance][ij].direction = 

nontubelevelgrid[current_distance][ij].direction; 

break; 
case 3: 

plate3ktOutput « current_distance « " " « ij « " " 
« nontubelevelgrid[current_distance][ij].x_magnitude « 
« nontubelevelgrid[current_distance][ij].y_magnitude « 
« nontubelevelgrid[current_distance][ij].z_magnitude « 
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« nontubelevelgrid[current_distance][ij].direction 
« endl; 

//Update the global array 
global3ktgrid[current_distance][ij].x_magnitude = 

nontubelevelgrid[current_distance][ij].x_magnitude; 
global3ktgrid[current_distance][ij].y_magnitude = 

nontubelevelgrid[current_distance][ij].y_magnitude; 
global3ktgrid[current_distance][ij].z_magnitude = 

nontubelevelgrid[current_distance][ij].z_magnitude; 
global3ktgrid[current_distance][ij].direction 

nontubelevelgrid[current_distance][ij].direction; 

break ,- 
default: 

cerr « "Invalid Submarine Speed" « endl; 
break; 

}  // end switch 

pass = 1; 

last_distance_filled = current_distance; 

//  

//This section does file output for files that are used to visualize 
//field output over the whole sub length. They are generally used for 
//viewing only. This data is not in a UVW usable form 
if (U[ij] >= 0.99)   { 

plateProfileOutput     « XF « " " 
« Y[ij] 
<< endl; 

//firstEntry = 0; 
} 

//Put output to file for flat plate slice at  50 ft 
if ((generationloop == 15) && (submarine_speed ==1))  { 

plateSlice50Output « Y[ij] « " " « U[ij]  « endl; 
} 

//Put output to file for flat plate slice at 100 ft 
if ((generationloop == 30) && (submarine_speed ==1))  { 

plateSlicelOOOutput « Y[ij] « » » « U[ij] « endl; 

//Put output to file for flat plate slice at 150 ft 
if ((generationloop == 45)  && (submarine_speed == 1)) { 

plateSlicel50Output << Y[ij] « " " « U[ij]  « endl; 

//Put output to file for flat plate slice at200 ft 
if ((generationloop == 60)  && (submarine_speed ==1)) { 

plateSlice200Output « Y[ij] « " " « U[ij]  « endl; 

//Put output to file for flat plate slice at 250 ft 
if ((generationloop == 75)  && (submarine_speed ==1)) { 

plateSlice250Output « Y[ij] « " " « U[ij] « endl; 

} 

} //end of generationloop 
} //end of submarine_speed loop 

//Close all output files 
platelktOutput.close(); 
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plate2ktOutput.close() ; 
plate3kt0utput.close() ; 
plateProfileOutput.close(); 
plateSlice50Output.close() ; 
plateSlicelOOOutput.close() 
plateSlicel50Output.close() 
plateSlice200Output.close() 
plateSlice250Output.close() 
return; 

}  //end of flatPlate function 

II — 
void tubeLevelFlowFieldGenerator ( void ) { 

//  

//Arrays to hold all values as they are modified 

FlowGridElements 
F1 o wGr i dE 1 emen t s 
FlowGridElements 
FlowGridElements 
FlowGridElements 

FlowGridElements 
FlowGridElements 
FlowGridElements 
FlowGridElements 
FlowGridElements 

FlowGridElements 
FlowGridElements 
FlowGridElements 
FlowGridElements 
FlowGridElements 

abovelkt [FLOWFIELDLENGTH] 
upperlkt [FLOWFIELDLENGTH] 
centerlkt[FLOWFIELDLENGTH] 
lowerlkt [FLOWFIELDLENGTH] 
belowlkt [FLOWFIELDLENGTH] 

above2kt [FLOWFIELDLENGTH] 
upper2kt [FLOWFIELDLENGTH] 
center2kt[FLOWFIELDLENGTH] 
lower2kt [FLOWFIELDLENGTH] 
below2kt [FLOWFIELDLENGTH] 

above3kt [FLOWFIELDLENGTH] 
upper3kt [FLOWFIELDLENGTH] 
center3kt[FLOWFIELDLENGTH] 
lower3kt [FLOWFIELDLENGTH] 
below3kt [FLOWFIELDLENGTH] 

[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 

[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 

[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 
[FLOWFIELDWIDTH] 

//  

//Output streams to hold the generated flow fields for later usage. 
//Five files are created for each sub speed to cover all major variations 
//in flow profile. 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
//  Files for other speeds are named using the same conventions. 

abovetubelevellkt.data - Holds the tube model flow field at 
1 ft above the tube using a submarine speed of 1 kt. 

uppertubelevellkt.data - Holds the tube model flow field 
at the upper edge of the tube for a submarine speed of 1 kt. 

centertubelevellkt.data - Holds the tube model flow field at 
the center of the tube for a submarine speed of 3 kt. 

lowertubelevellkt.data - Holds the tube model flow field at 
the lower edge of the tube for a submarine speed of 1 kt. 

belowtubelevellkt.data - Holds the tube model flow field at 
1 ft below the tube using a submarine speed of 1 kt. 

ofstream abovetubeLevellktOutput 
ofstream upperLevellktOutput 
ofstream centerLevellktOutput 
ofstream lowertubeLevellktOutput 
ofstream belowLevellktOutput 

("abovetubelevellkt.data", ios::out); 
("uppertubelevellkt.data", ios::out); 
("centertubelevellkt.data", ios::out); 
("lowertubelevellkt.data", ios::out); 
("belowtubelevellkt.data", ios::out); 
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ofstream abovetubeLevel2kt0utput 
ofstream upperLevel2ktOutput 
ofstream centerLevel2kt0utput 
ofstream lowertubeLevel2kt0utput 
ofstream belowLevel2kt0utput 

ofstream abovetubeLevel3kt0utput 
ofstream upperLevel3kt0utput 
ofstream centerLevel3kt0utput 
ofstream lowertubeLevel3kt0utput 
ofstream belowLevel3ktOutput 

("abovetubelevel2kt.data", ios::out); 
("uppertubelevel2kt.data", ios::out); 
("centertubelevel2kt.data", ios::out), 
("lowertubelevel2kt.data", ios::out); 
("belowtubelevel2kt.data", ios::out); 

("abovetubelevel3kt.data", ios::out); 
("uppertubelevel3kt.data", ios::out); 
("centertubelevel3kt.data", ios::out); 
("lowertubelevel3kt.data", ios::out); 
("belowtubelevel3kt.data", ios::out); 

//  

//Initialize the tube level flow fields to those of the flat 
//Plate fields 
for (int row = 0; row < FLOWFIELDLENGTH; row++)  { 

for (int col = 0; col < FLOWFIELDWIDTH; col++)  { 

abovelkt [row][col].x_magnitude = 
abovelkt [row][col].y_magnitude = 
abovelkt [row][col].z_magnitude = 
abovelkt [row][col].direction 

upperlkt [row][col].x_magnitude = 
upperlkt [row][col].y_magnitude = 
upperlkt [row][col].z_magnitude = 
upperlkt [row][col].direction 

centerlkt [row][col].x_magnitude 
centerlkt [row] [col].y_magnitude 
centerlkt [row][col].z_magnitude 
centerlkt [row][col].direction 

lowerlkt [row][col].x_magnitude = 
lowerlkt [row][col].y_magnitude = 
lowerlkt [row][col].z_magnitude = 
lowerlkt [row][col].direction 

belowlkt [row][col].x_magnitude = 
belowlkt [row][col].y_magnitude = 
belowlkt [row][col].z_magnitude = 
belowlkt [row][col].direction  = 

globallktgrid[row][col].x_magnitude 
globallktgrid[row][col].y_magnitude 
globallktgrid[row][col].z_magnitude 
globallktgrid[row][col].direction ; 

globallktgrid[row][col].x_magnitude 
globallktgrid[row][col].y_magnitude 
globallktgridtrow][col].z_magnitude 
globallktgrid[row][col].direction ; 

globallktgridtrow][col].x_magnitude 
globallktgridtrow][col].y_magnitude 
globallktgridtrow][col].z_magnitude 
globallktgridtrow][col].direction ; 

globallktgridtrow][col].x_magnitude 
globallktgridtrow][col].y_magnitude 
globallktgridtrow][col].z_magnitude 
globallktgridtrow] [col] .direction ,- 

globallktgridtrow]tcol].x_magnitude 
globallktgridtrow][col].y_magnitude 
globallktgridtrow][col].z_magnitude 
globallktgridtrow][col].direction ; 

above2kt [row][col].x_magnitude = 
above2kt [row][col].y_magnitude = 
above2kt [row][col].z_magnitude = 
above2kt [row][col].direction  = 

upper2kt [row][col].x_magnitude = 
upper2kt [row][col].y_magnitude = 
upper2kt [row][col].z_magnitude = 
upper2kt [row][col].direction 

center2kt [row][col].x_magnitude 
center2kt [row][col].y_magnitude 
center2kt [row][col].z_magnitude 
center2kt [row][col].direction 

lower2kt [row][col].x_magnitude = 
lower2kt [row][col].y_magnitude = 
lower2kt [row][col].z_magnitude = 
lower2kt [row][col].direction 

global2ktgrid[row][col].x_magnitude 
global2ktgrid[row][col].y_magnitude 
global2ktgrid[row][col].z_magnitude 
global2ktgrid[row][col].direction ; 

global2ktgrid[row][col].x_magnitude 
global2ktgrid[row][col].y_magnitude 
global2ktgrid[row][col].z_magnitude 
global2ktgrid[row][col].direction ; 

global2ktgrid[row][col].x_magnitude 
global2ktgrid[row][col].y_magnitude 
global2ktgrid[row][col].z_magnitude 
global2ktgrid[row][col].direction ; 

global2ktgrid[row][col].x_magnitude ; 
global2ktgrid[row][col].y_magnitude ; 
global2ktgrid[row][col].z_magnitude ; 
global2ktgrid[row][col].direction ; 
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below2kt [row][col].x_magnitude 
below2kt [row][col].y_magnitude 
below2kt [row][col].z_magnitude 
below2kt [row][col].direction 

global2ktgrid[row][col].x_magnitude 
global2ktgrid[row][col].y_magnitude 
global2ktgrid[row][col].z_magnitude 
global2ktgrid[row][col].direction ; 

above3kt [row][col].x_magnitude = 
above3kt [row][col].y_magnitude = 
above3kt [row][col].z_magnitude = 
above3kt [row][col].direction  = 

upper3kt [row][col].x_magnitude = 
upper3kt [row][col].y_magnitude = 
upper3kt [row][col].z_magnitude = 
upper3kt [row][col].direction  = 

center3kt [row][col].x_magnitude 
center3kt [row][col].y_magnitude 
center3kt [row][col].z_magnitude 
center3kt [row][col].direction 

lower3kt [row][col].x_magnitude = 
lower3kt [row][col].y_magnitude = 
lower3kt [row][col].z_magnitude = 
lower3kt [row][col].direction  = 

below3kt [row][col].x_magnitude = 
below3kt [row][col].y_magnitude = 
below3kt [row][col].z_magnitude = 
below3kt [row][col].direction = 

global3ktgrid[row][col].x_magnitude ; 
global3ktgrid[row][col].y_magnitude ; 
global3ktgrid[row][col].z_magnitude ; 
global3ktgrid[row][col].direction ; 

global3ktgrid[row][col].x_magnitude ; 
global3ktgrid[row][col].y_magnitude ; 
global3ktgrid[row][col].z_magnitude ; 
global3ktgrid[row][col].direction ; 

global3ktgrid[row][col].x_magnitude 
global3ktgrid[row][col].y_magnitude 
global3ktgrid[row][col].z_magnitude 
global3ktgrid[row] [col] .direction ; 

global3ktgrid[row][col].x_magnitude ; 
global3ktgrid[row][col].y_magnitude ; 
global3ktgrid[row][col].z_magnitude ; 
global3ktgrid[row][col].direction ; 

global3ktgrid[row][col].x_magnitude ; 
global3ktgrid[row][col].y_magnitude ; 
global3ktgrid[row][col].z_magnitude ; 
global3ktgrid[row][col].direction ; 

}  //End of col loop 
}   //End of Row loop 

//  

//Update the tube level flow fields to show the tube flow 
//disturbances 
double before_tube_force = 1.0; 
double after_tube_force  = -1.0; 

for (int along_hull = 30; along_hull <= 60; along_hull++) { 
before_tube_force = 1.0; 
for (int out_from_hull = 0; out_from_hull <= 30 ; out_from_hull++)  { 

abovelkt 
upperlkt 
centerlkt 
lowerlkt 
belowlkt 
above2kt 
upper2kt 
center2kt 
lower2kt 
below2kt 
above3kt 
upper3kt 
center3kt 
lower3kt 
below3kt 

[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along. 

hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 

[out. 
[out. 
[out. 
[out. 
[out, 
[out. 
[ out. 
[out. 
[out. 
[out. 
[out. 
[out. 
[out. 
[out. 
[out. 

from, 
from, 
from, 
from, 
from, 
from, 
from, 
from, 
from, 
from, 
from, 
from, 
from, 
from, 
from 

hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 

hull 
hull 
hull 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magni tude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magni tude 

before, 
before, 
before, 
before, 
before, 
before, 
before, 
before, 
before, 
before, 
before, 
before, 
before, 
before, 
before 

tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube, 
tube 

force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 

before_tube_force = before_tube_force - 0.032; 
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for ( along_hull = 61; along_hull <= 80; along_hull++) { 
after_tube_force = -1.0; 
for (int out_from_hull = 0; out_from_hull <= 30 out_from_hull++) 

abovelkt 
upperlkt 
centerlkt 
lowerlkt 
belowlkt 
above2kt 
upper2kt 
center2kt 
lower2kt 
below2kt 
above3kt 
upper3kt 
center3kt 
lower3kt 
below3kt 

[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along, 
[along. 

hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 

[out. 
[out 
[out 
[out 
[out 
[out 
[out 
[out. 
[out. 
[out 
[out. 
[out. 
[out. 
[out. 
[out. 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from, 

.from 

hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 
hull 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magnitude 

.x_magni tude 

.x_magnitude 

.x_magni tude 

.x_magnitude 

.x_magnitude 
-x_magnitude 
.x_magnitude 
.x_magnitude 
.x_magnitude 
.x_magnitude 
.x_magnitude 

after, 
after, 
after, 
after, 
after, 
after, 
after, 
after, 
after, 
after, 
after, 
after. 
after_ 
after, 
after 

tube, 
tube, 
tube, 
tube, 
tube, 
tube. 
tube_ 
tube. 
tube_ 
tube, 
tube, 
tube, 
tube. 
tube_ 
tube 

{ 

force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 
force 

after_tube_force = after_tube_force + 0.032; 

//   

//Output the flow field arrays to the proper files 
for (int rowl = 0; rowl < FLOWFIELDLENGTH; rowl++)  { 

for (int coll = 0; coll < FLOWFIELDWIDTH; coll++)  { 

abovetubeLevellktOutput « rowl « " "• « coll « " " 
« abovelkt [rowl][coll].x_magnitude « " " 
« abovelkt [rowl][coll].y_magnitude « " " 
« abovelkt [rowl][coll].z_magnitude « " " 
« abovelkt [rowl][coll].direction « endl; 

upperLevellktOutput 

centerLevellktOutput 

« rowl « " " « coll « " " 
« upperlkt [rowl][coll].x_magnitude « 
« upperlkt [rowl][coll].y_magnitude « 
«upperlkt [rowl][coll].z_magnitude « 
« upperlkt [rowl][coll].direction « endl; 

« rowl « " " « coll « " " 
« centerlkt [rowl][coll].x_magnitude « " " 
« centerlkt [rowl][coll].y_magnitude « " " 
« centerlkt [rowl][coll].z_magnitude « " " 
« centerlkt [rowl][coll].direction  « endl; 

lowertubeLevellktOutput « rowl « " " « coll « " " 
« lowerlkt [rowl][coll].x_magnitude « " " 
« lowerlkt [rowl][coll].y_magnitude « " " 
« lowerlkt [rowl][coll].z_magnitude « " " 
« lowerlkt [rowl][coll].direction  « endl; 

belowLevellktOutput    << rowl « " " << coll « " " 
« belowlkt [rowl][coll].x_magnitude « " " 
« belowlkt [rowl][coll].y_magnitude « " " 
« belowlkt [rowl][coll].z_magnitude « " " 
« belowlkt [rowl][coll].direction « endl; 

abovetubeLevel2ktOutput « rowl « " " « coll « " " 
« above2kt [rowl][coll].x_magnitude « " « 
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« above2kt [rowl][coll].y_magnitude « " " 
« above2kt [rowl][coll].z_magnitude « " " 
« above2kt [rowl][coll].direction   « endl; 

upperLeve12 ktOutput « rowl « " " « coll « " " 
« upper2kt [rowl][coll].x_magnitude « " " 
« upper2kt [rowl][coll].y_magnitude « " " 
« upper2kt [rowl][coll].z_magnitude « " " 
« upper2kt [rowl][coll].direction « endl; 

centerLevel2kt0utput « rowl « " " « coll « " " 
« center2kt [rowl][coll].x_magnitude « " " 
« center2kt [rowl][coll].y_magnitude « " " 
« center2kt [rowl][coll].z_magnitude « " " 
« center2kt [rowl][coll].direction « endl; 

lowertubeLevel2ktOutput « rowl « " " « coll « " " 
« lower2kt [rowl][coll].x_magnitude « " " 
« lower2kt [rowl][coll].y_magnitude « " " 
« lower2kt [rowl][coll].z_magnitude « " " 
« lower2kt [rowl][coll].direction « endl; 

be 1 owLeve 12 ktOutpu t « rowl « " " « coll « " " 
« below2kt [rowl][coll].x_magnitude « " " 
« below2kt [rowl][coll].y_magnitude « " " 
« below2kt [rowl][coll].z_magnitude « " " 
« below2kt [rowl][coll].direction « endl; 

abovetubeLevel3ktOutput « rowl « " " « coll « " " 
« above3kt [rowl][coll].x_magnitude « " " 
« above3kt [rowl][coll].y_magnitude « " " 
« above3kt [rowl][coll].z_magnitude « " " 
« above3kt [rowl][coll].direction « endl; 

upperLevel3ktOutput 

centerLevel3ktOutput 

« rowl « " " « coll « " " 
« upper3kt [rowl][coll].x_magnitude 
« upper3kt [rowl][coll].y_magnitude 
« upper3kt [rowl][coll].z_magnitude 
« upper3kt [rowl][coll].direction 

« " " 
« " " 
« " " 
« endl; 

« rowl « " " « coll « " " 
« center3kt [rowl][coll].x_magnitude « " " 
« center3kt [rowl][coll].y_magnitude « " " 
« center3kt [rowl][coll].z_magnitude « " " 
« center3kt [rowl][coll].direction « endl; 

lowertubeLevel3ktOutput « rowl « " 
« lower3kt 
« lower3kt 
« lower3kt 
« lower3kt 

belowLevel3kt0utput « rowl « " 
« below3kt 
« below3kt 
« below3kt 
« below3kt 

" « coll « " " 
[rowl][coll].x_magnitude « " " 
[rowl][coll].y_magnitude « " " 
[rowl][coll].z_magnitude « " " 
[rowl][coll].direction  « endl; 

" « coll « " " 
[rowl][coll].x_magnitude « " " 
[rowl][coll].y_magnitude « " " 
[rowl][coll].z_magnitude « " " 
[rowl][coll].direction  « endl; 

//End of coll loop 
//End of Rowl loop 

II- 
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//Close all Files for later use by dynamics/gnuplot 
abovetubeLevellktOutput.close(); 
upperLevellktOutput.close(); 
centerLevellktOutput.close(); 
lowertubeLevellktOutput.close(); 
belowLevellktOutput.close(); 

abovetubeLevel2kt0utput.close(); 
upperLevel2ktOutput.close(); 
centerLevel2ktOutput.close(); 
lowertubeLevel2kt0utput.close(); 
belowLevel2ktOutput.close(); 

abovetubeLevel3ktOutput.close(); 
upperLevel3kt0utput. close () ; 
centerLevel3ktOutput.close(); 
lowertubeLevel3ktOutput.close(); 
belowLevel3ktOutput.close(); 

return; 

II- 
//This is the driver to run the flateplate flow generation and 
//tube level flow generation functions 
main () { 

cout « "Starting the Flow Field Generation program." « endl; 

cout « »Generating the Flow Profiles for the Flat Plate Model Area 
flatPlateFlowFieldGenerator ( ); 

« endl; 

endl; 

cout « endl « endl; 
cout « "The following File(s) were created for use by the Phoenix AUV UVW: 

cout « " 
cout « " 
cout « " 

cout << " 
cout « " 
cout « " 
cout « " 
cout « " 
cout « " 
cout « endl « endl; 

flatplateflowfieldlkt.data" « endl 
flatplateflowfield2kt.data" « endl 
flatplateflowfield3kt.data" « endl 

flatprofile.data" « endl; 
flatslice50.data" « endl; 
flatslicelOO.data" « endl 
flatslicel50.data" « endl 
flatslice200.data" « endl 
flatslice250.data"   « endl 

endl ; 

cout « "Creating the Flow Profiles for the Tube Level Flow Areas." « endl• 
tubeLevelFlowFieldGenerator (); 
cout « "The following File(s) were created for use by the Phoenix AUV UVW: 

cout « " 
cout << " 
cout « " 
cout « " 
cout « " 
cout « endl; 
cout « " 
cout « " 
cout « " 

abovetubelevellkt.data" « endl; 
uppertubelevellkt.data" « endl; 
centertubelevellkt.data" « endl; 
lowertubelevellkt.data" « endl; 
belowtubelevellkt.data" « endl; 

abovetubelevel2kt.data" « endl; 
uppertubelevel2kt.data" « endl; 
centertubelevel2kt.data" « endl; 
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cout « " 
cout « " 
cout « endl; 
cout « " 
cout « " 
cout « " 
cout « " 
cout « " 
cout « endl << endl; 

lowertubelevel2kt.data" « endl; 
belowtubelevel2kt.data" « endl; 

abovetubelevel3kt.data" « endl; 
uppertubelevel3kt.data" << endl; 
centertubelevel3kt.data" « endl; 
lowertubelevel3kt.data" << endl; 
belowtubelevel3kt.data" « endl; 

cout « "Exiting the Flow Field Generation Program." « endl; 

return 0; 
}  // end main 
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APPENDIX E. SIMULATION VIDEO 

1. INTRODUCTION 

The attached video appendix gives an overall view of the Phoenix AUV virtual environment. 

All major objects are described and viewed. 

2. SURFACE BUOYANCY AND WAVE MOTION 

In this segment the AUV is run on a course into the seas in various sea states. The test runs 

demonstrate a sea state of 1, 3, and 5 respectively. 

3. PUMP OUTLETS/INLETS 

This part of the demonstration shows the AUV driving past a pump discharge outlet followed 

by a pump suction inlet. It demonstrates how the effects of turbulent flow are felt by the AUV, and 

how the AUV maintains stability and continues on the preplanned course. 

4. COMPLETE MISSION 

This is the final portion of the simulation tape. It shows a complete torpedo tube launch and 

recovery mission. The AUV is launched from a lower port torpedo tube, proceeds into the open water, 

takes position at the submarines stern and then conducts a docking evolution with the upper port 

torpedo tube. Both inward and outward outer door openings are assumed, ans simply represented 

using cylinders. 

5. INVOCATION INSTRUCTIONS 

To reproduce this mission the following steps should be taken. 

A.       Start the viewer application as follows. 

SGI> viewer 

2.        Start the dynamics portion of the program as follows 

SGI> dynamics 
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OR 

SGI> dynamics_nosonar 

*****Insert dynamics Menu Capture********* 

C. After dynamics is running select the option to conduct a torpedo tube docking 

evolution (it is letter "z"). 

D. Once all flow field arrays are initialized, select "1" to loop the dynamics with the 

execution level. 

E. Finally, launch the execution application as follows: 

SGI> execution mission mission.script.FlowFieldGenerator 

remote <dynamics host name> 

F. You should now observe a torpedo tube launch and recovery mission in the viewer. 
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